Nonexistence results for the Cauchy problem of time fractional nonlinear systems of thermo-elasticity

被引:11
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Kirane, M. [1 ,2 ]
机构
[1] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, LaSIE, Pole Sci & Technol, Ave Michel Crepeau, F-17031 La Rochelle, France
基金
中国国家自然科学基金;
关键词
nonexistence of global solutions; strongly coupled systems; fractional derivative; threshold exponent; BLOW-UP; EQUATION; THERMOELASTICITY; PROPAGATION;
D O I
10.1002/mma.4303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonexistence of global solutions to the Cauchy problem for systems of time fractional parabolic-hyperbolic and time fractional hyperbolic thermo-elasticity equations in R-d. For certain nonlinearities, we present 'threshold' exponents depending on the space dimension d. Our proof rests on the test function method. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:4272 / 4279
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2001, T MAT I STEKLOVA
[2]  
Botsenyuk T. B., 2000, UKR MATH J, V22, P499
[3]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[4]   The generalized Cattaneo equation for the description of anomalous transport processes [J].
Compte, A ;
Metzler, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7277-7289
[5]  
Gawinecki JA, 1995, THESIS
[6]   THERMOELASTICITY WITHOUT ENERGY-DISSIPATION [J].
GREEN, AE ;
NAGHDI, PM .
JOURNAL OF ELASTICITY, 1993, 31 (03) :189-208
[7]   ON FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL NONLINEAR THERMOELASTICITY [J].
HRUSA, WJ ;
MESSAOUDI, SA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (02) :135-151
[8]   A nonexistence result to a Cauchy problem in nonlinear one dimensional thermoelasticity [J].
Kirane, M ;
Tatar, NE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (01) :71-86
[9]   On the blow-up of the solution of an equation related to the Hamilton-Jacobi equation [J].
Korpusov, M. O. .
MATHEMATICAL NOTES, 2013, 93 (1-2) :90-101
[10]  
Love ER, 1938, P LOND MATH SOC, V44, P1