3-D Thermal Component Model for Electrothermal Analysis of Multichip Power Modules With Experimental Validation

被引:65
作者
Reichl, John [1 ,2 ]
Ortiz-Rodriguez, Jose M. [2 ]
Hefner, Allen [2 ]
Lai, Jih-Sheng [3 ]
机构
[1] Virginia Tech, Future Energy Elect Ctr, Dept Elect & Comp Engn, Blacksburg, VA 24060 USA
[2] NIST, Div Semicond Elect, Gaithersburg, MD 20899 USA
[3] Virginia Tech, Future Energy Elect Ctr, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24060 USA
关键词
Compact thermal model; component thermal model; electrothermal; multichip modules; soft switching inverter; SIMULATION; BEHAVIOR;
D O I
10.1109/TPEL.2014.2338278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents for the first time a full three-dimensional (3-D), multilayer, and multichip thermal component model, based on finite differences, with asymmetrical power distributions for dynamic electrothermal simulation. Finite difference methods (FDMs) are used to solve the heat conduction equation in three dimensions. The thermal component model is parameterized in terms of structural and material properties so it can be readily used to develop a library of component models for any available power module. The FDM model is validated with a full analytical Fourier series-based model in two dimensions. Finally, the FDM thermal model is compared against measured data acquired from a newly developed high-speed transient coupling measurement technique. By using the device threshold voltage as a time-dependent temperature-sensitive parameter (TSP), the thermal transient of a single device, along with the thermal coupling effect among nearby devices sharing common direct bond copper (DBC) substrates, can be studied under a variety of pulsed power conditions.
引用
收藏
页码:3300 / 3308
页数:9
相关论文
共 28 条
[1]  
[Anonymous], P PESCO6
[2]   Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization - Part I: Fundamentals and theory [J].
Bagnoli, PE ;
Casarosa, C ;
Ciampi, M ;
Dallago, E .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1998, 13 (06) :1208-1219
[3]  
Berning D, 2003, IEEE IND APPLIC SOC, P1826
[4]   A Fast Loss and Temperature Simulation Method for Power Converters, Part I: Electrothermal Modeling and Validation [J].
Bryant, Angus ;
Parker-Allotey, Nii-Adotei ;
Hamilton, Dean ;
Swan, Ian ;
Mawby, Philip A. ;
Ueta, Takashi ;
Nishijima, Toshifumi ;
Hamada, Kimimori .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (01) :248-257
[5]  
Castro AngelinaMorais., 2008, O Processo de Lamfalussy, P1
[6]  
Cengel Y., 2010, HEAT MASS TRANSFER F
[7]   Fully coupled dynamic electro-thermal simulation [J].
Digele, G ;
Lindenkreuz, S ;
Kasper, E .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1997, 5 (03) :250-257
[8]   Transient Electrothermal Simulation of Power Semiconductor Devices [J].
Du, Bin ;
Hudgins, Jerry L. ;
Santi, Enrico ;
Bryant, Angus T. ;
Palmer, Patrick R. ;
Mantooth, Homer Alan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (01) :237-248
[9]   Automated Fast Extraction of Compact Thermal Models for Power Electronic Modules [J].
Evans, Paul L. ;
Castellazzi, Alberto ;
Johnson, C. Mark .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (10) :4791-4802
[10]   Thermal Behavior of a Three Phase Inverter for EV (Electric Vehicle) [J].
Fakhfakh, Mohamed Amine ;
Ayadi, Moez ;
Neji, Rafik .
MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, :1494-1498