Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons

被引:30
作者
He, C. [1 ]
Wang, X. F. [1 ]
Zhang, W. X. [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
EFFECT TRANSISTOR; DEVICES; CARBON; GAP; HYDROGENATION; STRAIN;
D O I
10.1039/c7cp03404k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quasi one-dimensional materials made from carbon have attracted a lot of attention because of their interesting properties and potential applications in electronic devices. Recently, new kinds of carbon allotropes named as penta-graphene nanoribbons (P-GNRs) have been proposed. By implementing first-principles calculations, P-GNRs exhibit large tunable band gaps under bending stress, and the band gaps of P-GNRs are easier to control than those of GNRs. In addition, the order of spin moments of P-GNRs can transform from ferromagnetic to antiferromagnetic under the coupling effect of the electric field and bending strain, thus resulting in a significant change of magnetism. Therefore, the diverse electronic and magnetic properties highlight the potential applications of P-GNRs in flexible displays, wearable computation electronics and digital memory devices.
引用
收藏
页码:18426 / 18433
页数:8
相关论文
共 45 条
[1]   Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene [J].
Blonski, Piotr ;
Tucek, Jiri ;
Sofer, Zdenek ;
Mazanek, Vlastimil ;
Petr, Martin ;
Pumera, Martin ;
Otyepka, Michal ;
Zboril, Radek .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (08) :3171-3180
[2]   Graphene-Cr-Graphene Intercalation Nanostructures: Stability and Magnetic Properties from Density Functional Theory Investigations [J].
Bui, Viet Q. ;
Le, Hung M. ;
Kawazoe, Yoshiyuki ;
Duc Nguyen-Manh .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (07) :3605-3614
[3]   Graphene Spintronic Devices with Molecular Nanomagnets [J].
Candini, Andrea ;
Klyatskaya, Svetlana ;
Ruben, Mario ;
Wernsdorfer, Wolfgang ;
Affronte, Marco .
NANO LETTERS, 2011, 11 (07) :2634-2639
[4]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[5]   Graphene As a Tunnel Barrier: Graphene-Based Magnetic Tunnel Junctions [J].
Cobas, Enrique ;
Friedman, Adam L. ;
van't Erve, Olaf M. J. ;
Robinson, Jeremy T. ;
Jonker, Berend T. .
NANO LETTERS, 2012, 12 (06) :3000-3004
[6]   Gate-Tunable Photoemission from Graphene Transistors [J].
Copuroglu, Mehmet ;
Aydogan, Pinar ;
Polat, Emre O. ;
Kocabas, Coskun ;
Suzer, Sefik .
NANO LETTERS, 2014, 14 (05) :2837-2842
[7]   Carbon nanotube inter- and intramolecular logic gates [J].
Derycke, V ;
Martel, R ;
Appenzeller, J ;
Avouris, P .
NANO LETTERS, 2001, 1 (09) :453-456
[8]   A tunable and sizable bandgap of a g-C3N4/graphene/g-C3N4 sandwich heterostructure: a van der Waals density functional study [J].
Dong, M. M. ;
He, C. ;
Zhang, W. X. .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (15) :3830-3837
[9]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[10]   Graphene nanostrip digital memory device [J].
Gunlycke, Daniel ;
Areshkin, Denis A. ;
Li, Junwen ;
Mintmire, John W. ;
White, Carter T. .
NANO LETTERS, 2007, 7 (12) :3608-3611