Wasserstein distance and the rectifiability of doubling measures: part II

被引:3
作者
Azzam, Jonas [1 ]
David, Guy [2 ]
Toro, Tatiana [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Paris 11, CNRS, Lab Math, UMR 8658, F-91405 Orsay, France
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Rectifiability; Tangent measures; Doubling measures; Wasserstein distance;
D O I
10.1007/s00209-016-1788-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the structure of the support of a doubling measure by analyzing its self-similarity properties, which we estimate using a variant of the L-1 Wasserstein distance. We show that a measure satisfying certain self-similarity conditions admits a unique (up to multiplication by a constant) flat tangent measure at almost every point. This allows us to decompose the support into rectifiable pieces of various dimensions. So it mu une mesure doublante dans R. On introduit deux parties du support ou mu a certaines proprietes d'autosimilaritee, que l'on mesur a l'aided'une variante de la L-1-distance de Wasserstein, et on montre qu'en chaque point de ces deux parties, toutes les mesures tangentes a mu sont des multiples d'une mesure plate (la mesure de Lebesgue sur un sous-espace vectoriel). On utilise ceci pour donner une decomposition de ces deux parties en ensembles rectifiables de dimensions diverses.
引用
收藏
页码:861 / 891
页数:31
相关论文
共 11 条