An Interpolation of Hardy Inequality and Moser-Trudinger Inequality on Riemannian Manifolds with Negative Curvature

被引:12
作者
Dong, Yan Qing [1 ]
Yang, Qiao Hua [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Moser-Trudinger inequality; Hardy inequality; Riemannian manifold; negative curvature; SOBOLEV INEQUALITIES; UNBOUNDED-DOMAINS; SPACES;
D O I
10.1007/s10114-016-5129-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
引用
收藏
页码:856 / 866
页数:11
相关论文
共 29 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[3]  
[Anonymous], ARXIV11126431V1
[4]  
[Anonymous], 1994, LECT DIFFERENTIAL GE
[5]  
[Anonymous], ARXIV151207163
[6]  
[Anonymous], COMMUN CONT MATH
[7]  
AUBIN T, 1970, CR ACAD SCI A MATH, V270, P1514
[8]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[9]   Hardy inequalities on non-compact Riemannian manifolds [J].
Carron, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :883-891
[10]  
CHERRIER P, 1979, B SCI MATH, V103, P353