Analytic characterization of monotone Hopf-harmonics

被引:0
作者
Kangasniemi, Ilmari [1 ]
Koski, Aleksis [2 ]
Onninen, Jani [1 ,3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Helsinki, Dept Math & Stat, POB 68 Pietari Kalmin Katu 5, Helsinki 00014, Finland
[3] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Primary; 31C45; Secondary; 35J25; 58E20; 74B20; 46E35; GLOBAL INVERTIBILITY; MAPPINGS; DEFORMATIONS; REGULARITY; EQUATION; THEOREM;
D O I
10.1007/s00526-022-02246-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study solutions of the inner-variational equation associated with the Dirichlet energy in the plane, given homeomorphic Sobolev boundary data. We prove that such a solution is monotone if and only if its Jacobian determinant does not change sign. These solutions, called monotone Hopf-harmonics, are a natural alternative to harmonic homeomorphisms. Examining the topological behavior of a solution (not a priori monotone) on the trajectories of Hopf quadratic differentials plays a sizable role in our arguments.
引用
收藏
页数:25
相关论文
共 44 条