Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data

被引:52
作者
Rutkowski, David R. [1 ,2 ]
Roldan-Alzate, Alejandro [1 ,2 ]
Johnson, Kevin M. [2 ,3 ]
机构
[1] Univ Wisconsin, Mech Engn, Madison, WI USA
[2] Univ Wisconsin, Radiol, 1111 Highland Ave, Madison, WI 53705 USA
[3] Univ Wisconsin, Med Phys, 1111 Highland Ave, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
HEMODYNAMICS; ACCURACY;
D O I
10.1038/s41598-021-89636-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
[Anonymous], 2017, IEEE INT C ELECT TA
[2]   Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach [J].
Avendi, Michael R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (06) :2439-2448
[3]   Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images [J].
Baessler, Bettina ;
Mannil, Manoj ;
Oebel, Sabrina ;
Maintz, David ;
Alkadhi, Hatem ;
Manka, Robert .
RADIOLOGY, 2018, 286 (01) :103-112
[4]   Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression [J].
Bakhshinejad, Ali ;
Baghaie, Ahmadreza ;
Vali, Alireza ;
Saloner, David ;
Rayz, Vitaliy L. ;
D'Souza, Roshan M. .
JOURNAL OF BIOMECHANICS, 2017, 58 :162-173
[5]   Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review [J].
Beishon, Lucy ;
Haunton, Victoria J. ;
Panerai, Ronney B. ;
Robinson, Thompson G. .
JOURNAL OF ALZHEIMERS DISEASE, 2017, 59 (01) :369-385
[6]  
Berman Sara E, 2015, Alzheimers Dement (Amst), V1, P420
[7]   Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics [J].
Brindise, Melissa C. ;
Rothenberger, Sean ;
Dickerhoff, Benjamin ;
Schnell, Susanne ;
Markl, Michael ;
Saloner, David ;
Rayz, Vitaliy L. ;
Vlachos, Pavlos P. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (158)
[8]   Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements [J].
Busch, Julia ;
Giese, Daniel ;
Wissmann, Lukas ;
Kozerke, Sebastian .
MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (01) :200-210
[9]   CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks [J].
Chen, Honggang ;
He, Xiaohai ;
Ren, Chao ;
Qing, Linbo ;
Teng, Qizhi .
NEUROCOMPUTING, 2018, 285 :204-219
[10]   The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment [J].
Cibis, Merih ;
Potters, Wouter V. ;
Gijsen, Frank J. ;
Marquering, Henk ;
van Ooij, Pim ;
vanBave, Ed, I ;
Wentzel, Jolanda J. ;
Nederveen, Aart J. .
PLOS ONE, 2016, 11 (09)