共 35 条
Central value of the symmetric square L-functions related to Hecke-Maass forms
被引:2
|作者:
Tang, Hengcai
[1
]
Xu, Zhao
[2
]
机构:
[1] Henan Univ, Inst Modern Math, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Maass form;
symmetric square L-function;
trace formula;
COEFFICIENTS;
D O I:
10.1007/s10986-016-9317-0
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let {I center dot (j) (z) : j a parts per thousand yenaEuro parts per thousand 1} be an orthonormal basis of Hecke-Maass cusp forms with Laplace eigenvalue 1/4 + t (j) (2) . For each I center dot (j) (z), we have the automorphic L-function L(s, sym(2) I center dot (j) ), which is called the symmetric square L-function associated to I center dot (j) . In this paper, we consider the average estimate of L(1/2, sym(2) I center dot (j) ) and prove that, for sufficiently large T, the estimate holds for T (1/3 + epsilon) a parts per thousand currency signaEuro parts per thousand M a parts per thousand currency signaEuro parts per thousand T (1 -aEuro parts per thousand epsilon) .
引用
收藏
页码:251 / 267
页数:17
相关论文