Central value of the symmetric square L-functions related to Hecke-Maass forms

被引:2
|
作者
Tang, Hengcai [1 ]
Xu, Zhao [2 ]
机构
[1] Henan Univ, Inst Modern Math, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Maass form; symmetric square L-function; trace formula; COEFFICIENTS;
D O I
10.1007/s10986-016-9317-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {I center dot (j) (z) : j a parts per thousand yenaEuro parts per thousand 1} be an orthonormal basis of Hecke-Maass cusp forms with Laplace eigenvalue 1/4 + t (j) (2) . For each I center dot (j) (z), we have the automorphic L-function L(s, sym(2) I center dot (j) ), which is called the symmetric square L-function associated to I center dot (j) . In this paper, we consider the average estimate of L(1/2, sym(2) I center dot (j) ) and prove that, for sufficiently large T, the estimate holds for T (1/3 + epsilon) a parts per thousand currency signaEuro parts per thousand M a parts per thousand currency signaEuro parts per thousand T (1 -aEuro parts per thousand epsilon) .
引用
收藏
页码:251 / 267
页数:17
相关论文
共 35 条