Ground state solutions of Poholaev type and Nehari type for a class of nonlinear Choquard equations

被引:29
作者
Luo, Huxiao [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Variational methods; Choquard equation; Ground state solution; Berestycki-Lions conditions; SCHRODINGER-NEWTON EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2018.07.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the autonomous Choquard equation -Delta u + u = (I-alpha * F(u)) f(u), in R-N , where N >= 3, 0 < alpha < N, I-alpha is a Riesz potential, and f is an element of C(R, R) satisfies the general Berestycki Lions conditions. In Sec. 2, combining constrained variational method with deformation lemma, we obtain a ground state solution of Pohozaev type for the above equation. In Sec. 3, using non-Nehari manifold method, we prove that the above equation has a ground state solution of Nehari type. The results improve some ones in [12]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 862
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 2018, ARXIV180301130
[2]  
[Anonymous], 1997, Minimax theorems
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[5]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[6]   SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION [J].
Genev, Hristo ;
Venkov, George .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05) :903-923
[7]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[8]  
Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4
[9]   Ground state and multiple solutions for the fractional Schrodinger-Poisson system with critical Sobolev exponent [J].
Luo, Huxiao ;
Tang, Xianhua .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 :24-52
[10]   Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains [J].
Luo, Huxiao ;
Tang, Xianhua ;
Gao, Zu .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)