Plateau limit-based tri-histogram equalisation for image enhancement

被引:25
作者
Paul, Abhisek [1 ]
Bhattacharya, Paritosh [2 ]
Maity, Santi P. [3 ]
Bhattacharyya, Bidyut Kr. [4 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Agartala, India
[2] Natl Inst Technol, Dept Math, Agartala, India
[3] Indian Inst Engn Sci & Technol, Dept Informat Technol, Sibpur, Howrah, India
[4] Natl Inst Technol, Dept Elect & Commun Engn, Agartala, India
关键词
image enhancement; equalisers; traditional plateau; adaptive plateau limit; digital images; clipped histogram; histogram subdivision limit parameters; individual sub-image; single enhanced image; tri-histogram equalisation algorithm; image quality; CONTRAST ENHANCEMENT; BRIGHTNESS; INDEX;
D O I
10.1049/iet-ipr.2017.1088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An adaptive plateau limit-based histogram equalisation algorithm is suggested to enhance digital images. Histogram of the image is clipped with a plateau limit to avoid over enhancement. The plateau limit is derived from the average of the mean and the median intensity values to offer the improved enhancement. Clipped histogram is subdivided into three parts, using histogram subdivision limit parameters that are calculated on the basis of the standard deviation of the image. Histogram of individual sub-image is equalised independently and then combined into a single enhanced image. Experimental results demonstrate that the proposed plateau limit-based tri-histogram equalisation algorithm enhances the image quality. Compared with the other traditional plateau and non-plateau limit-based histogram equalisation algorithms, quantitative and visual quality assessments effectively validate the superiority of the proposed algorithm.
引用
收藏
页码:1617 / 1625
页数:9
相关论文
共 37 条
[1]  
[Anonymous], IEEE T PATTERN ANAL
[2]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[3]   Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD [J].
Bhandari, A. K. ;
Soni, V. ;
Kumar, A. ;
Singh, G. K. .
ISA TRANSACTIONS, 2014, 53 (04) :1286-1296
[4]  
Block M., 2017, STUD DIGIT HERIT, V1, P566, DOI [10.14434/sdh.v1i2.23214, DOI 10.14434/SDH.V1I2.23214]
[5]   Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation [J].
Chen, SD ;
Ramli, AR .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2003, 49 (04) :1301-1309
[6]   Image enhancement based on intuitionistic fuzzy sets theory [J].
Deng, He ;
Sun, Xianping ;
Liu, Maili ;
Ye, Chaohui ;
Zhou, Xin .
IET IMAGE PROCESSING, 2016, 10 (10) :701-709
[7]   Magnetic resonance imaging-clonal selection algorithm: An intelligent adaptive enhancement of brain image with an improved immune algorithm [J].
Gong, Tao ;
Fan, Tiantian ;
Pei, Lei ;
Cai, Zixing .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 62 :405-411
[8]  
Gonzalez R. C., 2007, DIGITAL IMAGE PROCES, V3rd
[9]   LIME: Low-Light Image Enhancement via Illumination Map Estimation [J].
Guo, Xiaojie ;
Li, Yu ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) :982-993
[10]   A tool supported approach for brightness preserving contrast enhancement and mass segmentation of mammogram images using histogram modified grey relational analysis [J].
Gupta, Bhupendra ;
Tiwari, Mayank .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2017, 28 (04) :1549-1567