Pressure-Induced Miscibility Increase of CH4 in H2O: A Computational Study Using Classical Potentials

被引:6
作者
Pruteanu, Ciprian G. [1 ,2 ,3 ]
Marenduzzo, Davide [1 ,2 ]
Loveday, John S. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS; METHANE; CLATHRATE; WATER; HYDRATE; SOLUBILITY; ICE;
D O I
10.1021/acs.jpcb.9b06086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane and water demix under normal (ambient) pressure and temperature conditions because of the polar nature of water and the apolar nature of methane. Recent experimental work has shown, though, that increasing the pressure to values between 1 and 2 GPa (10-20 kbar) leads to a marked increase of methane solubility in water, for temperatures which are well below the critical temperature for water. Here, we perform molecular dynamics simulations based on classical force fields-which are well-used and have been validated at ambient conditions-for different values of pressure and temperature. We find the expected increase in miscibility for mixtures of methane and supercritical water; however, our model fails to reproduce the experimentally observed increase in methane solubility at large pressures and below the critical temperature of water. This points to the need to develop more accurate force fields for methane and methane-water mixtures under pressure.
引用
收藏
页码:8091 / 8095
页数:5
相关论文
共 36 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Molecular dynamics study of the stability of methane structure H clathrate hydrates [J].
Alavi, Saman ;
Ripmeester, J. A. ;
Klug, D. D. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (12)
[3]   Plastic crystal phases of simple water models [J].
Aragones, J. L. ;
Vega, C. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (24)
[4]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[5]   Quantifying Disorder through Conditional Entropy: An Application to Fluid Mixing [J].
Brandani, Giovanni B. ;
Schor, Marieke ;
MacPhee, Cait E. ;
Grubmueller, Helmut ;
Zachariae, Ulrich ;
Marenduzzo, Davide .
PLOS ONE, 2013, 8 (06)
[6]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647
[7]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[8]   A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate [J].
Docherty, H. ;
Galindo, A. ;
Vega, C. ;
Sanz, E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07)
[9]   A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar [J].
Duan, Zhenhao ;
Mao, Shide .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (13) :3369-3386
[10]   Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges [J].
English, Niall J. ;
MacElroy, J. M. D. .
CHEMICAL ENGINEERING SCIENCE, 2015, 121 :133-156