Joint Source-Channel Coding for Semantics-Aware Grant-Free Radio Access in IoT Fog Networks

被引:11
作者
Dommel, Johannes [1 ]
Utkovski, Zoran [1 ]
Simeone, Osvaldo [2 ]
Stanczak, Slawomir [1 ,3 ]
机构
[1] Fraunhofer Heinrich Hertz Inst, Dept Wireless Commun & Networks, D-10587 Berlin, Germany
[2] Kings Coll London, Dept Engn, CTR, Kings Commun Learning & Informat Proc KCLIP Lab, London WC2R 2LS, England
[3] Tech Univ Berlin, Dept Telecommun Syst, D-10623 Berlin, Germany
基金
欧洲研究理事会;
关键词
Encoding; Sensors; Message passing; Decoding; Wireless sensor networks; Wireless communication; Bayes methods; Approximate message passing; fog-radio access network; random access; type-based multiple access; semantic communications;
D O I
10.1109/LSP.2021.3072278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fog-radio access network (F-RAN) architecture is studied for an Internet-of-Things (IoT) system in which wireless sensors monitor a number of multi-valued events and transmit in the uplink using grant-free random access to multiple edge nodes (ENs). Each EN is connected to a central processor (CP) via a finite-capacity fronthaul link. In contrast to conventional information-agnostic protocols based on separate source-channel (SSC) coding, where each device uses a separate codebook, this paper considers an information-centric approach based on joint source-channel (JSC) coding via a non-orthogonal generalization of type-based multiple access (TBMA). By leveraging the semantics of the observed signals, all sensors measuring the same event share the same codebook (with non-orthogonal codewords), and all such sensors making the same local estimate of the event transmit the same codeword. The F-RAN architecture directly detects the events' values without first performing individual decoding for each device. Cloud and edge detection schemes based on Bayesian message passing are designed and trade-offs between cloud and edge processing are assessed.
引用
收藏
页码:728 / 732
页数:5
相关论文
共 21 条
  • [1] Abramson N., 1970, P AFIPS 70 FALL P FA, P281, DOI [10.1145/1478462.1478502, DOI 10.1145/1478462.1478502]
  • [2] Type-based random access for distributed detection over multiaccess fading channels
    Anandkumar, Animashree
    Tong, Lang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) : 5032 - 5043
  • [3] Massive Access for 5G and Beyond
    Chen, Xiaoming
    Ng, Derrick Wing Kwan
    Yu, Wei
    Larsson, Erik G.
    Al-Dhahir, Naofal
    Schober, Robert
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (03) : 615 - 637
  • [4] Capacity of Gaussian Many-Access Channels
    Chen, Xu
    Chen, Tsung-Yi
    Guo, Dongning
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (06) : 3516 - 3539
  • [5] 6G VISION AND REQUIREMENTS
    David, Klaus
    Berndt, Hendrik
    [J]. IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2018, 13 (03): : 72 - 80
  • [6] Dommel J, 2020, INT CONF ACOUST SPEE, P8574, DOI [10.1109/icassp40776.2020.9053021, 10.1109/ICASSP40776.2020.9053021]
  • [7] Gamal A. E., 2012, Network Information Theory
  • [8] Information-Centric Grant-Free Access for IoT Fog Networks: Edge vs. Cloud Detection and Learning
    Kassab, Rahif
    Simeone, Osvaldo
    Popovski, Petar
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (10) : 6347 - 6361
  • [9] Kay S.M., 1998, FUNDAMENTALS STAT SI
  • [10] Liu K., 2004, P IEEE INT C AC SPEE, piii