Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles

被引:0
|
作者
Akbari, Hossein [1 ]
Zeynali, Hossein [2 ]
Bakhshayeshi, Ali [3 ]
机构
[1] Islamic Azad Univ, Ardabil Branch, Dept Phys, Ardebil, Iran
[2] Islamic Azad Univ, Kashan Branch, Dept Phys, Kashan, Iran
[3] Islamic Azad Univ, Mashhad Branch, Dept Phys, Mashhad, Iran
关键词
Magnetization reversal; Interparticle interactions; Exchange bias; FePt/Fe3O4; nanoparticles; Magnetic recording; ALIGNED 2-PHASE MAGNETS; NUCLEATION FIELDS; ENERGY PRODUCT; EXCHANGE; ANISOTROPY;
D O I
10.1016/j.physleta.2015.12.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe3O4 was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe3O4 core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner-Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe3O4 core/shell nanoparticles. There is a difference between the results from Stoner-Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe3O4 core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:927 / 936
页数:10
相关论文
共 50 条
  • [41] Magnetic, biocompatible CoFe2O4/Fe3O4 core/shell nanoparticles: designing and improved hyperthermia properties
    K. T. V. Oanh
    H. T. L. Phong
    D. N. Van
    T. T. M. Trang
    P. H. Thu
    X. N. Truong
    X. N. Ca
    C. D. Linh
    H. P. Nam
    H. D. Manh
    Journal of Nanoparticle Research, 2023, 25
  • [42] Fe3O4/CoFe2O4 core-shell nanoparticles with enhanced magnetic properties for hyperthermia application
    Oanh, V. T. K.
    Nguyen, L. H.
    Phong, L. T. H.
    Trang, M. T. T.
    Thu, H. P.
    Truong, N. X.
    Ca, N. X.
    Nam, P. H.
    Manh, D. H.
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2024, 15 (02)
  • [43] Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2, and Fe3O4/perlite@SiO2@sulfanilamide magnetic nanomaterials
    Kutluay, Sinan
    Sahin, Omer
    Ece, Mehmet Sakir
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (03):
  • [44] Fabrication of Fe3O4 @ Polydopamine @ Bovine Serum Ablumin (BSA) and Fe3O4 @ Polydopamine-Ag Core-Shell Nanoparticles and Their Catalytic and Antibacterial Properties
    Tao, Cai-Hong
    Chen, Tiandi
    Ma, Fusheng
    Liu, Hui
    Li, Xiuqi
    Lin, Shenghong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (04) : 2211 - 2218
  • [45] Electronic and magnetic structure at the Fe/Fe3O4 interface
    Kida, T.
    Honda, S.
    Itoh, H.
    Inoue, J.
    Yanagihara, H.
    Kita, E.
    Mibu, K.
    PHYSICAL REVIEW B, 2011, 84 (10)
  • [46] Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites
    Park, J. O.
    Rhee, K. Y.
    Park, S. J.
    APPLIED SURFACE SCIENCE, 2010, 256 (23) : 6945 - 6950
  • [47] Influence of Synthesis Conditions on the Properties of Nanoparticles and Core/Shell Structures Based on Fe3O4
    Solopan, S.
    Yelenich, O.
    Kolodiazhnyi, T.
    Greneche, J.
    Belous, A.
    2014 IEEE INTERNATIONAL CONFERENCE ON OXIDE MATERIALS FOR ELECTRONIC ENGINEERING (OMEE), 2014, : 83 - 84
  • [48] Structure and magnetic properties of CoFe2O4 and Fe3O4 nanoparticles
    Chitu, L.
    Jergel, M.
    Majkova, E.
    Luby, S.
    Capek, I.
    Satka, A.
    Ivan, J.
    Kovac, J.
    Timko, M.
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2007, 27 (5-8): : 1415 - 1417
  • [49] Surface Modification of Magnetic Fe3O4 Nanoparticles by Folic Acid
    Wei Kai-Wei
    Liu Qi
    Cheng Mei-Ling
    Yuan Xiao-Wei
    Yu Li-Li
    Xu Zheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2010, 26 (01) : 40 - 44
  • [50] High field surface magnetic study of Fe3O4 nanoparticles
    Kihal, A.
    Fillion, G.
    Bouzabata, B.
    Barbara, B.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (03): : 604 - 614