Numerical simulation of some biomechanical problems

被引:5
作者
Nedoma, J
Klézl, Z
Fousek, J
Kestránek, Z
Stehlík, J
机构
[1] AS CR, Inst Comp Sci, Prague 18207 8, Czech Republic
[2] Cent Mil Hosp, Dept Orthopaedy & Traumatol, Prague 16000 6, Czech Republic
[3] Klaudians Hosp, Orthopaed & Traumatol Dept, Mlada Boleslav 29301, Czech Republic
关键词
non-linear elasticity; contact problems; variational inequality; finite element method; wrist; spine; fracture; biomechanics;
D O I
10.1016/S0378-4754(02)00084-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper is concerned with the numerical solution of non-linear conservation laws, and the contribution biomechanical models of spine and of loaded wrist are formulated and analysed. The models are based on a contact problem in non-linear elastic theology. The stress-strain relation is derived from a positive definite strain energy density function. For a weak solution of the problem, a variational inequality approach is used. Then the secant modules method and the finite element method are applied. First, the model of the weight bearing wrist, and secondly, the model of the Chance's fracture of lumbar spine are discussed. (C) 2002 Published by Elsevier Science B.V. on behalf of IMACS.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 13 条
[1]   FINITE-ELEMENT STRESS ANALYSIS OF AN INTERVERTEBRAL-DISK [J].
BELYTSCHKO, T ;
KULAK, RF ;
SCHULTZ, AB ;
GALANTE, JO .
JOURNAL OF BIOMECHANICS, 1974, 7 (03) :277-285
[2]  
DICK W, 1984, INTERNAL FIXATION TH, P131
[3]  
FUNG YC, 1965, GEN HOOKES LAW FDN S
[4]  
Gr??ger, 1974, NICHTLINEARE OPERATO
[5]   NONLINEAR BEHAVIOR OF HUMAN INTERVERTEBRAL-DISK UNDER AXIAL LOAD [J].
KULAK, RF ;
BELYTSCHKO, TB ;
SCHULTZ, AB ;
GALANTE, JO .
JOURNAL OF BIOMECHANICS, 1976, 9 (06) :377-386
[6]  
NDEOMA J, 2000, P 16 IMACS WORLD C L
[7]  
Necas J., 1981, MATH THEORY ELASTIC
[8]  
Necas J., 1983, APL MAT, V28, P199
[9]   Solution of a semi-coercive contact problem in a non-linear thereto-elastic rheology [J].
Nedoma, J ;
Hlavácek, I .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 60 (1-2) :119-127
[10]  
Nedoma J, 1999, NUMER LINEAR ALGEBR, V6, P557, DOI 10.1002/(SICI)1099-1506(199910/11)6:7<557::AID-NLA180>3.3.CO