Semi-recursive nonparametric identification in the general sense of a nonlinear heteroscedastic autoregression

被引:5
作者
Kitaeva, A. V. [1 ]
Koshkin, G. M. [2 ]
机构
[1] Tomsk Polytech Univ, Tomsk, Russia
[2] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
TIME-SERIES;
D O I
10.1134/S0005117910020086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider semi-recursive kernel estimates of conditional mean, volatility function, and sensitivity function for a nonlinear heteroscedastic autoregression. We find the principal parts of mean square errors for these estimates.
引用
收藏
页码:257 / 274
页数:18
相关论文
共 15 条
[1]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[2]   Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data [J].
Bosq, D ;
Cheze-Payaud, N .
STATISTICS, 1999, 32 (03) :229-247
[3]  
Eykhof P., 1974, SYSTEM IDENTIFICATIO
[4]   Nonparametric vector autoregression [J].
Hardle, W ;
Tsybakov, A ;
Yang, L .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 68 (02) :221-245
[5]  
KITAEVA AV, 2009, P 8 INT C SYST ID C, P1001
[6]  
KITAEVA AV, 2009, AUTOMAT REM CONTR, P389
[7]  
KOSHKIN GM, 1999, SIB MAT ZH, V40, P605
[8]   NONPARAMETRIC-ESTIMATION AND IDENTIFICATION OF NONLINEAR ARCH TIME-SERIES - STRONG-CONVERGENCE AND ASYMPTOTIC NORMALITY - STRONG-CONVERGENCE AND ASYMPTOTIC NORMALITY [J].
MASRY, E ;
TJOSTHEIM, D .
ECONOMETRIC THEORY, 1995, 11 (02) :258-289
[9]  
Nadaraya E. A., 1964, TEOR VEROYA PRIMEN, V19, P147
[10]  
PASHCHENKO FF, 1973, SISTEMY UPRAVLENIYA, P72