Mixed hp-DGFEM for incompressible flows

被引:137
作者
Schötzau, D
Schwab, C
Toselli, A
机构
[1] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
[2] Swiss Fed Inst Technol, SAM, CH-8092 Zurich, Switzerland
关键词
hp-FEM; discontinuous Galerkin methods; Stokes problem;
D O I
10.1137/S0036142901399124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tenser product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.
引用
收藏
页码:2171 / 2194
页数:24
相关论文
共 43 条
[21]  
COCKBURN B, 2000, LECT NOTES COMPUT SC, V11
[22]  
Cockburn B, 1999, HIGH ORDER METHODS C, V10, P69, DOI DOI 10.1007/978-3-662-03882-6_2
[23]   STABILIZED FINITE-ELEMENT METHODS .2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
FRANCA, LP ;
FREY, SL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :209-233
[24]   ERROR ANALYSIS OF SOME GALERKIN LEAST-SQUARES METHODS FOR THE ELASTICITY EQUATIONS [J].
FRANCA, LP ;
STENBERG, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1680-1697
[25]  
GEORGOULIS E, 2001, 0109 NA OXF U COMP L
[26]  
Gervasio P, 1998, NUMER METH PART D E, V14, P115
[27]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[28]   Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method [J].
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (17-18) :1895-1908
[29]   Discontinuous hp-finite element methods for advection-diffusion-reaction problems [J].
Houston, P ;
Schwab, C ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2133-2163
[30]   A nonconforming finite element method for the stationary Navier-Stokes equations [J].
Karakashian, OA ;
Jureidini, WN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :93-120