Multi-space-enabled deep learning of breast tumors improves prediction of distant recurrence risk

被引:2
作者
Arefan, Dooman [1 ]
Zheng, Bingjie [6 ]
Dabbs, David J. [2 ]
Bhargava, Rohit [2 ]
Wu, Shandong [1 ,3 ,4 ,5 ]
机构
[1] Univ Pittsburgh, Dept Radiol, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Pathol, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Biomed Informat, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Dept Bioengn, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[5] Univ Pittsburgh, Intelligent Syst Program, 3362 Fifth Ave, Pittsburgh, PA 15213 USA
[6] Zhengzhou Univ, Affiliated Canc Hosp, Henan Canc Hosp, Dept Radiol, 127 Dongming Rd, Zhengzhou 150001, Henan, Peoples R China
来源
MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS | 2019年 / 10954卷
基金
美国国家卫生研究院;
关键词
Breast cancer; Oncotype DX score; recurrence risk; digital mammogram; deep learning;
D O I
10.1117/12.2513013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, we proposed a multi-space-enabled deep learning modeling method for predicting Oncotype DX recurrence risk categories from digital mammogram images on breast cancer patients. Our study included 189 estrogen receptor-positive (ER+) and node-negative invasive breast cancer patients, who all have Oncotype DX recurrence risk score available. Breast tumors were segmented manually by an expert radiologist. We built a 3-channel convolutional neural network (CNN) model that accepts three-space tumor data: the spatial intensity information and the phase and amplitude components in the frequency domain. We compared this multi-space model to a baseline model that is based on sorely the intensity information. Classification accuracy is based on 5-fold cross-validation and average area-under the receiver operating characteristics curve (AUC). Our results showed that the 3-channel multi-space CNN model achieved a statistically significant improvement than the baseline model.
引用
收藏
页数:7
相关论文
共 15 条
[1]  
Abdolmohammadi Jamil, 2018, Asian Pac J Cancer Prev, V19, P2891
[2]  
Abdolmohammadi Jamil, 2016, Electron Physician, V8, P2726
[3]  
[Anonymous], APPL COMPUTATIONAL I
[4]  
[Anonymous], CLIN PRACT GUID
[5]  
[Anonymous], 2017, CVPR, DOI DOI 10.1109/CVPR.2017.506
[6]   Automatic breast density classification using neural network [J].
Arefan, D. ;
Talebpour, A. ;
Ahmadinejhad, N. ;
Asl, Kamali .
JOURNAL OF INSTRUMENTATION, 2015, 10
[7]  
Arefan D., 2013, RES J APPL SCI ENG T, V5, P513
[8]   Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015 [J].
Coates, A. S. ;
Winer, E. P. ;
Goldhirsch, A. ;
Gelber, R. D. ;
Gnant, M. ;
Piccart-Gebhart, M. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2015, 26 (08) :1533-1546
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88