GCV for Tikhonov regularization via global Golub-Kahan decomposition

被引:41
作者
Fenu, Caterina [1 ]
Reichel, Lothar [2 ]
Rodriguez, Giuseppe [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Viale Merello 92, I-09123 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
generalized cross validation; Tikhonov regularization; parameter estimation; global Golub-Kahan decomposition; GENERALIZED CROSS-VALIDATION; PARAMETER CHOICE RULES; MATRIX; TRACE; MOMENTS;
D O I
10.1002/nla.2034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized cross validation is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small-scale problems, but prohibitively expensive to compute for large-scale ones. This paper describes a novel method, based on Gauss-type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for large-scale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:467 / 484
页数:18
相关论文
共 36 条
  • [1] [Anonymous], 1996, REGULARIZATION INVER
  • [2] [Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. 220512815
  • [3] Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix
    Avron, Haim
    Toledo, Sivan
    [J]. JOURNAL OF THE ACM, 2011, 58 (02)
  • [4] Some large-scale matrix computation problems
    Bai, ZJ
    Fahey, M
    Golub, G
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) : 71 - 89
  • [5] Comparing parameter choice methods for regularization of ill-posed problems
    Bauer, Frank
    Lukas, Mark A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (09) : 1795 - 1841
  • [6] Bounding matrix functionals via partial global block Lanczos decomposition
    Bellalij, M.
    Reichel, L.
    Rodriguez, G.
    Sadok, H.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 94 : 127 - 139
  • [7] BJORCK A, 1988, BIT, V28, P659, DOI 10.1007/BF01941141
  • [8] Error estimates for the regularization of least squares problems
    Brezinski, C.
    Rodriguez, G.
    Seatzu, S.
    [J]. NUMERICAL ALGORITHMS, 2009, 51 (01) : 61 - 76
  • [9] Brezinski C, 2012, ELECTRON T NUMER ANA, V39, P144
  • [10] Moments of a linear operator, with applications to the trace of the inverse of matrices and the solution of equations
    Brezinski, Claude
    Fika, Paraskevi
    Mitrouli, Marilena
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (06) : 937 - 953