The Slow Cycling Phenotype: A Growing Problem for Treatment Resistance in Melanoma

被引:48
作者
Ahn, Antonio [1 ]
Chatterjee, Aniruddha [1 ,2 ]
Eccles, Michael R. [1 ,2 ]
机构
[1] Univ Otago, Dunedin Sch Med, Dept Pathol, 56 Hanover St, Dunedin 9054, Otago, New Zealand
[2] Maurice Wilkins Ctr Mol Biodiscovery, Auckland, New Zealand
关键词
MITOCHONDRIAL OXIDATIVE STRESS; METASTATIC MELANOMA; ACQUIRED-RESISTANCE; BRAF(V600E) INHIBITION; CONFERS RESISTANCE; BRAF INHIBITION; RAF INHIBITION; MAPK PATHWAY; MITF; CELLS;
D O I
10.1158/1535-7163.MCT-16-0535
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Treatment resistance in metastatic melanoma is a longstanding issue. Current targeted therapy regimes in melanoma largely target the proliferating cancer population, leaving slow-cycling cancer cells undamaged. Consequently, slow-cycling cells are enriched upon drug therapy and can remain in the body for years until acquiring proliferative potential that triggers cancer relapse. Here we overview the molecular mechanisms of slow-cycling cells that underlie treatment resistance in melanoma. Three main areas of molecular reprogramming are discussed that mediate slow cycling and treatment resistance. First, a low microphthalmia-associated transcription factor (MITF) dedifferentiated state activates various signaling pathways. This includes WNT5A, EGFR, as well as other signaling activators, such as AXL and NF-kB. Second, the chromatin-remodeling factor Jumonji/ARID domain-containing protein 1B (JARID1B, KDM5B) orchestrates and maintains slow cycling and treatment resistance in a small subpopulation of melanoma cells. Finally, a shift in metabolic state toward oxidative phosphorylation has been demonstrated to regulate treatment resistance in slow-cycling cells. Elucidation of the underlying processes of slow cycling and its utilization by melanoma cells may reveal new vulnerable characteristics as therapeutic targets. Moreover, combining current therapies with targeting slow-cycling sub-populations of melanoma cells may allow for more durable and greater treatment responses. (C) 2017 AACR.
引用
收藏
页码:1002 / 1009
页数:8
相关论文
共 81 条
[1]   WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors [J].
Anastas, Jamie N. ;
Kulikauskas, Rima M. ;
Tamir, Tigist ;
Rizos, Helen ;
Long, Georgina V. ;
von Euw, Erika M. ;
Yang, Pei-Tzu ;
Chen, Hsiao-Wang ;
Haydu, Lauren ;
Toroni, Rachel A. ;
Lucero, Olivia M. ;
Chien, Andy J. ;
Moon, Randall T. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (07) :2877-2890
[2]   Metabolic flexibility and cell hierarchy in metastatic cancer [J].
Berridge, Michael V. ;
Herst, Patries M. ;
Tan, An S. .
MITOCHONDRION, 2010, 10 (06) :584-588
[3]   Mitochondrial Electron Transport Is the Cellular Target of the Oncology Drug Elesclomol [J].
Blackman, Ronald K. ;
Cheung-Ong, Kahlin ;
Gebbia, Marinella ;
Proia, David A. ;
He, Suqin ;
Kepros, Jane ;
Jonneaux, Aurelie ;
Marchetti, Philippe ;
Kluza, Jerome ;
Rao, Patricia E. ;
Wada, Yumiko ;
Giaever, Guri ;
Nislow, Corey .
PLOS ONE, 2012, 7 (01)
[4]   Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression [J].
Carreira, S ;
Goodall, J ;
Aksan, I ;
La Rocca, SA ;
Galibert, MD ;
Denat, L ;
Larue, L ;
Goding, CR .
NATURE, 2005, 433 (7027) :764-769
[5]   Mitf regulation of Dia1 controls melanoma proliferation and invasiveness [J].
Carreira, Suzanne ;
Goodall, Jane ;
Denat, Laurence ;
Rodriguez, Mercedes ;
Nuciforo, Paolo ;
Hoek, Keith S. ;
Testori, Alessandro ;
Larue, Lionel ;
Goding, Colin R. .
GENES & DEVELOPMENT, 2006, 20 (24) :3426-3439
[6]   Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation [J].
Chapman, Paul B. ;
Hauschild, Axel ;
Robert, Caroline ;
Haanen, John B. ;
Ascierto, Paolo ;
Larkin, James ;
Dummer, Reinhard ;
Garbe, Claus ;
Testori, Alessandro ;
Maio, Michele ;
Hogg, David ;
Lorigan, Paul ;
Lebbe, Celeste ;
Jouary, Thomas ;
Schadendorf, Dirk ;
Ribas, Antoni ;
O'Day, Steven J. ;
Sosman, Jeffrey A. ;
Kirkwood, John M. ;
Eggermont, Alexander M. M. ;
Dreno, Brigitte ;
Nolop, Keith ;
Li, Jiang ;
Nelson, Betty ;
Hou, Jeannie ;
Lee, Richard J. ;
Flaherty, Keith T. ;
McArthur, Grant A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (26) :2507-2516
[7]   Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis [J].
Chatterjee, Aniruddha ;
Stockwell, Peter A. ;
Ahn, Antonio ;
Rodger, Euan J. ;
Leichter, Anna L. ;
Eccles, Michael R. .
ONCOTARGET, 2017, 8 (04) :6085-6101
[8]   Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny [J].
Cheli, Y. ;
Guiliano, S. ;
Botton, T. ;
Rocchi, S. ;
Hofman, V. ;
Hofman, P. ;
Bahadoran, P. ;
Bertolotto, C. ;
Ballotti, R. .
ONCOGENE, 2011, 30 (20) :2307-2318
[9]   H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence [J].
Chicas, Agustin ;
Kapoor, Avnish ;
Wang, Xiaowo ;
Aksoy, Ozlem ;
Evertts, Adam G. ;
Zhang, Michael Q. ;
Garcia, Benjamin A. ;
Bernstein, Emily ;
Lowe, Scott W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (23) :8971-8976
[10]   Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations [J].
Cierlitza, Monika ;
Chauvistre, Heike ;
Bogeski, Ivan ;
Zhang, Xin ;
Hauschild, Axel ;
Herlyn, Meenhard ;
Schadendorf, Dirk ;
Vogt, Thomas ;
Roesch, Alexander .
EXPERIMENTAL DERMATOLOGY, 2015, 24 (02) :155-157