Evaluation of Injectable Strontium-Containing Borate Bioactive Glass Cement with Enhanced Osteogenic Capacity in a Critical-Sized Rabbit Femoral Condyle Defect Model

被引:69
作者
Zhang, Yadong [1 ]
Cui, Xu [2 ]
Zhao, Shichang [1 ]
Wang, Hui [2 ]
Rahaman, Mohamed N. [3 ]
Liu, Zhongtang [4 ]
Huang, Wenhai [2 ]
Zhang, Changqing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 6, Dept Orthoped Surg, Shanghai 200233, Peoples R China
[2] Tongji Univ, Sch Mat Sci & Engn, Shanghai 200092, Peoples R China
[3] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
[4] Second Mil Med Univ, Changhai Hosp, Dept Orthoped, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
injectable bone cement; borate bioactive glass; strontium doped bioactive glass; osteoinductivity; CALCIUM-PHOSPHATE CEMENT; MARROW STROMAL CELLS; BONE REGENERATION; IN-VITRO; POSTMENOPAUSAL OSTEOPOROSIS; OSTEOBLAST PROLIFERATION; SENSING RECEPTOR; IONIC PRODUCTS; ALVEOLAR BONE; RANELATE;
D O I
10.1021/am507008z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 +/- 1.2 min) and a compressive strength of 19 +/- 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.
引用
收藏
页码:2393 / 2403
页数:11
相关论文
共 56 条
[1]   New bioactive glass-ceramic: Synthesis and application in PMMA bone cement composites [J].
Abd Samad, Hamizah ;
Jaafar, Mariatti ;
Othman, Radzali ;
Kawashita, Masakazu ;
Abdul Razak, Noor Hayati .
BIO-MEDICAL MATERIALS AND ENGINEERING, 2011, 21 (04) :247-258
[2]   Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants [J].
Andersen, Ole Z. ;
Offermanns, Vincent ;
Sillassen, Michael ;
Almtoft, Klaus P. ;
Andersen, Inge H. ;
Sorensen, Soren ;
Jeppesen, Christian S. ;
Kraft, David C. E. ;
Bottiger, Jorgen ;
Rasse, Michael ;
Kloss, Frank ;
Foss, Morten .
BIOMATERIALS, 2013, 34 (24) :5883-5890
[3]   Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants [J].
Bain, S. D. ;
Jerome, C. ;
Shen, V. ;
Dupin-Roger, I. ;
Ammann, P. .
OSTEOPOROSIS INTERNATIONAL, 2009, 20 (08) :1417-1428
[4]   Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells [J].
Barbara, A ;
Delannoy, P ;
Denis, BG ;
Marie, PJ .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2004, 53 (04) :532-537
[5]   The pathology of total joint arthroplasty - II. Mechanisms of implant failure [J].
Bauer, TW ;
Schils, J .
SKELETAL RADIOLOGY, 1999, 28 (09) :483-497
[6]   Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model [J].
Bi, Lianxiang ;
Rahaman, Mohamed N. ;
Day, Delbert E. ;
Brown, Zackary ;
Samujh, Christopher ;
Liu, Xin ;
Mohammadkhah, Ali ;
Dusevich, Vladimir ;
Eick, J. David ;
Bonewald, Lynda F. .
ACTA BIOMATERIALIA, 2013, 9 (08) :8015-8026
[7]   Dual effect of strontium ranelate:: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro [J].
Bonnelye, Edith ;
Chabadel, Anne ;
Saltel, Frederic ;
Jurdic, Pierre .
BONE, 2008, 42 (01) :129-138
[8]   Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics [J].
Bose, Susmita ;
Fielding, Gary ;
Tarafder, Solaiman ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (10) :594-605
[9]   A new insight into the dissociating effect of strontium on bone resorption and formation [J].
Braux, Julien ;
Velard, Frederic ;
Guillaume, Christine ;
Bouthors, Sylvie ;
Jallot, Edouard ;
Nedelec, Jean-Marie ;
Laurent-Maquin, Dominique ;
Laquerriere, Patrice .
ACTA BIOMATERIALIA, 2011, 7 (06) :2593-2603
[10]   Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells [J].
Brown, Roger F. ;
Rahaman, Mohamed N. ;
Dwilewicz, Agatha B. ;
Huang, Wenhai ;
Day, Delbert E. ;
Li, Yadong ;
Bal, B. Sonny .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 88A (02) :392-400