Nonperturbative Infrared Finiteness in a Superrenormalizable Scalar Quantum Field Theory

被引:7
|
作者
Cossu, Guido [1 ,2 ]
Del Debbio, Luigi [2 ]
Juettner, Andreas [3 ,4 ]
Kitching-Morley, Ben [3 ,4 ,5 ]
Lee, Joseph K. L. [2 ]
Portelli, Antonin [2 ]
Rocha, Henrique Bergallo [2 ]
Skenderis, Kostas [4 ,5 ]
机构
[1] Braid Technol, Shibuya 2-24-12, Tokyo, Japan
[2] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[4] Univ Southampton, STAG Res Ctr, Southampton SO17 1BJ, Hants, England
[5] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
ELECTROWEAK PHASE-TRANSITION; LATTICE; ALGORITHMS; EFFICIENT; MODEL;
D O I
10.1103/PhysRevLett.126.221601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a study of the IR behavior of a three-dimensional superrenormalizable quantum field theory consisting of a scalar field in the adjoint of SU(N) with a phi(4) interaction. A bare mass is required for the theory to be massless at the quantum level. In perturbation theory, the critical mass is ambiguous due to IR divergences, and we indeed find that at two loops in lattice perturbation theory the critical mass diverges logarithmically. It was conjectured long ago in [R. Jackiw et al., Phys. Rev. D 23, 2291 (1981), T. Appelquist et al., Phys. Rev. D 23, 2305 (1981)] that superrenormalizable theories are nonperturbatively IR finite, with the coupling constant playing the role of an IR regulator. Using a combination of Markov Chain Monte Carlo simulations of the lattice-regularized theory, frequentist and Bayesian data analysis, and considerations of a corresponding effective theory, we gather evidence that this is indeed the case.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fuzzy scalar field theory as matrix quantum mechanics
    Ihl, Matthias
    Sachse, Christoph
    Saemann, Christian
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [2] Renormalization in open quantum field theory. Part I. Scalar field theory
    Baidya, Avinash
    Jana, Chandan
    Loganayagam, R.
    Rudra, Arnab
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [3] QUANTUM COMPUTATION OF SCATTERING IN SCALAR QUANTUM FIELD THEORIES
    Jordan, Stephen P.
    Lee, Keith S. M.
    Preskill, John
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (11-12) : 1014 - 1080
  • [4] Single-particle digitization strategy for quantum computation of a φ4 scalar field theory
    Barata, Joao
    Mueller, Niklas
    Tarasov, Andrey
    Venugopalan, Raju
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [5] Nonperturbative light-front effective potential for static sources in quenched scalar Yukawa theory
    Chabysheva, Sophia S.
    Hiller, John R.
    PHYSICAL REVIEW D, 2022, 105 (05)
  • [6] Quantum Field Theory
    Hofmann, Ralf
    UNIVERSE, 2024, 10 (01)
  • [7] Scalar field theory on noncommutative Snyder spacetime
    Battisti, Marco Valerio
    Meljanac, Stjepan
    PHYSICAL REVIEW D, 2010, 82 (02):
  • [8] QUANTUM COSMOLOGY WITH SCALAR-SPINOR INTERACTION FIELD
    沈有根
    Science China Mathematics, 1989, (07) : 847 - 855
  • [9] Hamiltonian of Mean Force and Dissipative Scalar Field Theory
    Jafari, Marjan
    Kheirandish, Fardin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (04) : 1224 - 1234
  • [10] Entanglement entropy in scalar field theory on the fuzzy sphere
    Okuno, Shizuka
    Suzuki, Mariko
    Tsuchiya, Asato
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):