Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis

被引:240
作者
Deng, Qi [1 ]
Hui, Dafeng [1 ]
Dennis, Sam [2 ]
Reddy, K. Chandra [2 ]
机构
[1] Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA
[2] Tennessee State Univ, Dept Agr & Environm Sci, Nashville, TN 37203 USA
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2017年 / 26卷 / 06期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
available phosphorus; meta-analysis; nitrogen addition; phosphatase activity; phosphorus limitation; total phosphorus; RANDOM-EFFECTS MODELS; NUTRIENT LIMITATION; DEPOSITION; CARBON; PERSPECTIVE; SATURATION; DYNAMICS; BIOMASS; RATIOS; PLANTS;
D O I
10.1111/geb.12576
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim: Anthropogenic additions of nitrogen (N) are expected to drive terrestrial ecosystems toward greater phosphorus (P) limitation. However, a comprehensive understanding of how an ecosystem's P cycle responds to external N inputs remains elusive, making model predictions of the anthropogenic P limitation and its impacts largely uncertain. Location: Global. Time period: 1986-2015. Major taxa studied: Terrestrial ecosystems. Methods: We conducted a meta-analysis including 288 independent study sites from 192 articles to evaluate global patterns and controls of 10 variables associated with ecosystem P cycling under N addition. Results: Overall, N addition increased biomass in plants (134%) and litter (115%) as well as plant P content (117%), while decreasing P concentrations in plants and litter (28% and 211%, respectively). N addition did not change soil labile P or microbial P, but enhanced phosphatase activity (124%). The effects of N addition on the litter P pool and soil total P remained unclear due to significant publication biases. The response of P cycling to N addition in tropical forests was different from that in other ecosystem types. N addition did not change plant biomass or phosphatase activity in tropical forests but significantly reduced plant P and soil labile P concentrations. The shift in plant P concentration under N addition was negatively correlated with the N application rate or total N load. N-induced change in soil labile P was strongly regulated by soil pH value at the control sites, with a significant decrease of 14% only in acidic soils (pH < 5.5). Main conclusions: Our results suggest that as anthropogenic N enhancement continues in the future it could induce P limitation in terrestrial ecosystems while accelerating P cycling, particularly in tropical forests. A quantitative framework generated on the basis of this meta-analysis is useful for our understanding of ecosystem P cycling with N addition, and for incorporating the anthropogenic P limitation into ecosystem models used to analyse effects of future climate change.
引用
收藏
页码:713 / 728
页数:16
相关论文
共 62 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]   Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review [J].
Achat, David L. ;
Augusto, Laurent ;
Gallet-Budynek, Anne ;
Loustau, Denis .
BIOGEOCHEMISTRY, 2016, 131 (1-2) :173-202
[3]   Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature [J].
Achat, David Ludovick ;
Pousse, Noemie ;
Nicolas, Manuel ;
Bredoire, Felix ;
Augusto, Laurent .
BIOGEOCHEMISTRY, 2016, 127 (2-3) :255-272
[4]   Stoichiometry and Nutrition of Plant Growth in Natural Communities [J].
Agren, Goeran I. .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2008, 39 :153-170
[5]   Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach [J].
Augusto, Laurent ;
Delerue, Florian ;
Gallet-Budynek, Anne ;
Achat, David L. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (03) :804-815
[6]  
Borenstein M, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P193
[7]   A basic introduction to fixed-effect and random-effects models for meta-analysis [J].
Borenstein, Michael ;
Hedges, Larry V. ;
Higgins, Julian P. T. ;
Rothstein, Hannah R. .
RESEARCH SYNTHESIS METHODS, 2010, 1 (02) :97-111
[8]   Does nitrogen deposition increase forest production? The role of phosphorus [J].
Braun, Sabine ;
Thomas, Vera F. D. ;
Quiring, Rebecca ;
Flueckiger, Walter .
ENVIRONMENTAL POLLUTION, 2010, 158 (06) :2043-2052
[9]  
Busman L., 2002, NATURE PHOSPHORUS SO
[10]   Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: A review [J].
Chen, C. R. ;
Condron, L. M. ;
Xu, Z. H. .
FOREST ECOLOGY AND MANAGEMENT, 2008, 255 (3-4) :396-409