Sitravatinib potentiates immune checkpoint blockade in refractory cancer models

被引:94
作者
Du, Wenting [1 ,2 ]
Huang, Huocong [1 ,2 ]
Sorrelle, Noah [1 ,2 ]
Brekkenu, Rolf A. [1 ,2 ,3 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Surg, Div Surg Oncol, Dallas, TX USA
[2] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Therapeut Oncol Res, 6000 Harry Hines Blvd, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Pharmacol, Dallas, TX USA
关键词
RESISTANCE;
D O I
10.1172/jci.insight.124184
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Immune checkpoint blockade has achieved significant therapeutic success for a subset of cancer patients; however, a large portion of cancer patients do not respond. Unresponsive tumors are characterized as being immunologically "cold," indicating that these tumors lack tumor antigen-specific primed cytotoxic T cells. Sitravatinib is a spectrum-selective tyrosine kinase inhibitor targeting TAM (TYRO3, AXL, MerTK) and split tyrosine-kinase domain-containing receptors (VEGFR and PDGFR families and KIT) plus RET and MET, targets that contribute to the immunosuppressive tumor microenvironment. We report that sitravatinib has potent antitumor activity by targeting the tumor microenvironment, resulting in innate and adaptive immune cell changes that augment immune checkpoint blockade. These results suggest that sitravatinib has the potential to combat resistance to immune checkpoint blockade and expand the number of cancer patients that are responsive to immune therapy.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Blockade of CCR5 in melanoma: An alternative immune checkpoint modulator [J].
Escandon Brehm, Julia ;
Bedogni, Barbara .
EXPERIMENTAL DERMATOLOGY, 2020, 29 (02) :196-199
[42]   Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types? [J].
De Wispelaere, Wout ;
Annibali, Daniela ;
Tuyaerts, Sandra ;
Lambrechts, Diether ;
Amant, Frederic .
CANCERS, 2021, 13 (09)
[43]   Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer [J].
Zhu, Shaoming ;
Ma, A-Hong ;
Zhu, Zheng ;
Adib, Elio ;
Rao, Ting ;
Li, Na ;
Ni, Kaiyuan ;
Chittepu, Veera Chandra Sekhar Reddy ;
Prabhala, Rao ;
Risco, Juan Garisto ;
Kwiatkowski, David ;
Mouw, Kent ;
Sonpavde, Guru ;
Cheng, Fan ;
Pan, Chong-Xian .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (11)
[44]   EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer [J].
Hastings, K. ;
Yu, H. A. ;
Wei, W. ;
Sanchez-Vega, F. ;
DeVeaux, M. ;
Choi, J. ;
Rizvi, H. ;
Lisberg, A. ;
Truini, A. ;
Lydon, C. A. ;
Liu, Z. ;
Henick, B. S. ;
Wurtz, A. ;
Cai, G. ;
Plodkowski, A. J. ;
Long, N. M. ;
Halpenny, D. F. ;
Killam, J. ;
Oliva, I ;
Schultz, N. ;
Riely, G. J. ;
Arcila, M. E. ;
Ladanyi, M. ;
Zelterman, D. ;
Herbst, R. S. ;
Goldberg, S. B. ;
Awad, M. M. ;
Garon, E. B. ;
Gettinger, S. ;
Hellmann, M. D. ;
Politi, K. .
ANNALS OF ONCOLOGY, 2019, 30 (08) :1311-1320
[45]   Sensitivity to immune checkpoint inhibitors in BRAF/MEK inhibitor refractory melanoma [J].
Patel, Riyaben P. ;
Lim, Lydia Rui Jia ;
Saleh, Reem ;
Schenk, Darius ;
Lee, Michael K. ;
Lelliott, Emily ;
Rao, Aparna D. ;
Arabi, Shaghayegh ;
Smith, Lorey ;
Trigos, Anna S. ;
Haynes, Nicole ;
McArthur, Grant A. ;
Sheppard, Karen E. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2025, 13 (05)
[46]   Utomilumab in Patients With Immune Checkpoint Inhibitor-Refractory Melanoma and Non-Small-Cell Lung Cancer [J].
Hong, David S. ;
Gopal, Ajay K. ;
Shoushtari, Alexander N. ;
Patel, Sandip P. ;
He, Aiwu R. ;
Doi, Toshihiko ;
Ramalingam, Suresh S. ;
Patnaik, Amita ;
Sandhu, Shahneen ;
Chen, Ying ;
Davis, Craig B. ;
Fisher, Timothy S. ;
Huang, Bo ;
Fly, Kolette D. ;
Ribas, Antoni .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[47]   Immune Checkpoint Blockade Outcome in Small-Cell Lung Cancer and Its Relationship With Retinoblastoma Mutation Status and Function [J].
Dowlati, Afshin ;
Abbas, Ata ;
Chan, Timothy ;
Henick, Brian ;
Wang, Xuya ;
Doshi, Parul ;
Fu, Pingfu ;
Patel, Jyoti ;
Kuo, Fengshen ;
Chang, Han ;
Balli, David .
JCO PRECISION ONCOLOGY, 2022, 6
[48]   SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response [J].
Ibanez-Molero, Sofia ;
van Vliet, Alex ;
Pozniak, Joanna ;
Hummelink, Karlijn ;
Terry, Alexandra M. ;
Monkhorst, Kim ;
Sanders, Joyce ;
Hofland, Ingrid ;
Landeloos, Ewout ;
Van Herck, Yannick ;
Bechter, Oliver ;
Kuilman, Thomas ;
Zhong, Weiwei ;
Marine, Jean-Christophe ;
Wessels, Lodewyk ;
Peeper, Daniel S. .
ONCOIMMUNOLOGY, 2022, 11 (01)
[49]   Antimetabolite pemetrexed primes a favorable tumor microenvironment for immune checkpoint blockade therapy [J].
Lu, Chia-Sing ;
Lin, Ching-Wen ;
Chang, Ya-Hsuan ;
Chen, Hsuan-Yu ;
Chung, Wei-Chia ;
Lai, Wei-Yun ;
Ho, Chao-Chi ;
Wang, Tong-Hong ;
Chen, Chi-Yuan ;
Yeh, Chen-Lin ;
Wu, Sean ;
Wang, Shu-Ping ;
Yang, Pan-Chyr .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[50]   ZFHX3 mutation as a protective biomarker for immune checkpoint blockade in non-small cell lung cancer [J].
Zhang, Jiexia ;
Zhou, Ningning ;
Lin, Anqi ;
Luo, Peng ;
Chen, Xin ;
Deng, Huojin ;
Kang, Shijun ;
Guo, Linlang ;
Zhu, Weiliang ;
Zhang, Jian .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2021, 70 (01) :137-151