Sitravatinib potentiates immune checkpoint blockade in refractory cancer models

被引:94
作者
Du, Wenting [1 ,2 ]
Huang, Huocong [1 ,2 ]
Sorrelle, Noah [1 ,2 ]
Brekkenu, Rolf A. [1 ,2 ,3 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Surg, Div Surg Oncol, Dallas, TX USA
[2] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Therapeut Oncol Res, 6000 Harry Hines Blvd, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Pharmacol, Dallas, TX USA
关键词
RESISTANCE;
D O I
10.1172/jci.insight.124184
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Immune checkpoint blockade has achieved significant therapeutic success for a subset of cancer patients; however, a large portion of cancer patients do not respond. Unresponsive tumors are characterized as being immunologically "cold," indicating that these tumors lack tumor antigen-specific primed cytotoxic T cells. Sitravatinib is a spectrum-selective tyrosine kinase inhibitor targeting TAM (TYRO3, AXL, MerTK) and split tyrosine-kinase domain-containing receptors (VEGFR and PDGFR families and KIT) plus RET and MET, targets that contribute to the immunosuppressive tumor microenvironment. We report that sitravatinib has potent antitumor activity by targeting the tumor microenvironment, resulting in innate and adaptive immune cell changes that augment immune checkpoint blockade. These results suggest that sitravatinib has the potential to combat resistance to immune checkpoint blockade and expand the number of cancer patients that are responsive to immune therapy.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer [J].
Anagnostou, Valsamo ;
Smith, Kellie N. ;
Forde, Patrick M. ;
Niknafs, Noushin ;
Bhattacharya, Rohit ;
White, James ;
Zhang, Theresa ;
Adleff, Vilmos ;
Phallen, Jillian ;
Wali, Neha ;
Hruban, Carolyn ;
Guthrie, Violeta B. ;
Rodgers, Kristen ;
Naidoo, Jarushka ;
Kang, Hyunseok ;
Sharfman, William ;
Georgiades, Christos ;
Verde, Franco ;
Illei, Peter ;
Li, Qing Kay ;
Gabrielson, Edward ;
Brock, Malcolm V. ;
Zahnow, Cynthia A. ;
Baylin, Stephen B. ;
Scharpf, Robert B. ;
Brahmer, Julie R. ;
Karchin, Rachel ;
Pardoll, Drew M. ;
Velculescu, Victor E. .
CANCER DISCOVERY, 2017, 7 (03) :264-276
[32]   A Designer Scaffold with Immune Nanoconverters for Reverting Immunosuppression and Enhancing Immune Checkpoint Blockade Therapy [J].
Phuengkham, Hathaichanok ;
Song, Chanyoung ;
Lim, Yong Taik .
ADVANCED MATERIALS, 2019, 31 (42)
[33]   The role of IFN-γ-signalling in response to immune checkpoint blockade therapy [J].
Wong, Chun Wai ;
Huang, Yang Yu ;
Hurlstone, Adam .
ESSAYS IN BIOCHEMISTRY, 2023, 67 (06) :991-1002
[34]   Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer [J].
Papakyriacou, Irineos ;
Kutkaite, Ginte ;
Bedos, Marta Rubies ;
Nagarajan, Divya ;
Alford, Liam P. ;
Menden, Michael P. ;
Mao, Yumeng .
NATURE COMMUNICATIONS, 2024, 15 (01)
[35]   Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite [J].
Renga, Giorgia ;
Nunzi, Emilia ;
Pariano, Marilena ;
Puccetti, Matteo ;
Bellet, Marina Maria ;
Pieraccini, Giuseppe ;
D'Onofrio, Fiorella ;
Santarelli, Ilaria ;
Stincardini, Claudia ;
Aversa, Franco ;
Riuzzi, Francesca ;
Antognelli, Cinzia ;
Gargaro, Marco ;
Bereshchenko, Oxana ;
Ricci, Maurizio ;
Giovagnoli, Stefano ;
Romani, Luigina ;
Costantini, Claudio .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 (03)
[36]   The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy [J].
Russell, Bonnie L. ;
Sooklal, Selisha A. ;
Malindisa, Sibusiso T. ;
Daka, Lembelani Jonathan ;
Ntwasa, Monde .
FRONTIERS IN ONCOLOGY, 2021, 11
[37]   Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma [J].
Auslander, Noam ;
Zhang, Gao ;
Lee, Joo Sang ;
Frederick, Dennie T. ;
Miao, Benchun ;
Moll, Tabea ;
Tian, Tian ;
Wei, Zhi ;
Madan, Sanna ;
Sullivan, Ryan J. ;
Boland, Genevieve ;
Flaherty, Keith ;
Herlyn, Meenhard ;
Ruppin, Eytan .
NATURE MEDICINE, 2018, 24 (10) :1545-+
[38]   Interleukin-34 Limits the Therapeutic Effects of Immune Checkpoint Blockade [J].
Hama, Naoki ;
Kobayashi, Takuto ;
Han, Nanumi ;
Kitagawa, Fumihito ;
Kajihara, Nabeel ;
Otsuka, Ryo ;
Wada, Haruka ;
Lee, Hee-kyung ;
Rhee, Hwanseok ;
Hasegawa, Yoshinori ;
Yagita, Hideo ;
Baghdadi, Muhammad ;
Seino, Ken-ichiro .
ISCIENCE, 2020, 23 (10)
[39]   The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors [J].
Jiang, Haili ;
Ye, Yingquan ;
Wang, Mingqi ;
Sun, Xin ;
Sun, Ting ;
Chen, Yang ;
Li, Ping ;
Zhang, Mei ;
Wang, Ting .
BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2024, 40 (04) :4446-4465
[40]   Microbiota-centered interventions to boost immune checkpoint blockade therapies [J].
Almonte, Andrew A. ;
Thomas, Simon ;
Zitvogel, Laurence .
JOURNAL OF EXPERIMENTAL MEDICINE, 2025, 222 (07)