On a class of nonlinear nonlocal fractional differential equations

被引:7
作者
Fazli, Hossein [1 ]
Sun, Hongguang [1 ]
Aghchi, Sima [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Coll Mech & Mat, Nanjing 210098, Jiangsu, Peoples R China
[2] Univ Santiago de Compostela, Dept Anal Matemat Estadist & Optimizac, Santiago De Compostela 15782, Spain
[3] Univ Santiago de Compostela, Inst Matemat, Santiago De Compostela 15782, Spain
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; extremal solution; nonlocal conditions; Bagley-Torvik equation; Basset equation; EXISTENCE;
D O I
10.37193/CJM.2021.03.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of extremal solutions for a class of fractional differential equations in the area of fluid dynamics. By establishing a new comparison theorem and applying the classical monotone iterative approach, we establish sufficient conditions to ensure the existence of the extremal solutions and construct twin convergent monotone explicit iterative schemes. Generalized nonlinear nonlocal Bagley-Torvik equation and generalized Basset equation with nonlinear source functions are some special cases of our discussed problem.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 25 条
[1]   Nonlinear nonlocal Cauchy problems in Banach spaces [J].
Aizicovici, S ;
Lee, H .
APPLIED MATHEMATICS LETTERS, 2005, 18 (04) :401-407
[2]   Existence results for a class of abstract nonlocal Cauchy problems [J].
Aizicovici, S ;
McKibben, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :649-668
[3]  
Aizicovici S., 2007, COMMUN APPL ANAL, V11, P285
[4]   Some solutions of the nonhomogeneous Bagley-Torvik equation [J].
Aleroev, Temirkhan S. ;
Erokhin, Sergey .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)
[5]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[6]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[7]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[8]  
Byszewski L., 1993, Zesz. Nauk. Pol. Rzes. Mat. Fiz, V18, P109, DOI [10.1016/0022-247X(91)90164-U, DOI 10.1016/0022-247X(91)90164-U]
[9]  
Byszewski L., 1991, Applicable Analysis, V40, P11
[10]  
Diethelm K., 2010, LECT NOTES MATH