Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis

被引:99
作者
Pankratova, Galina [1 ]
Leech, Donal [2 ,3 ]
Gorton, Lo [1 ]
Hederstedt, Lars [4 ]
机构
[1] Lund Univ, Dept Biochem & Struct Biol, SE-22100 Lund, Sweden
[2] Natl Univ Ireland Galway, Sch Chem, Univ Rd, Galway, Ireland
[3] Natl Univ Ireland Galway, Ryan Inst, Univ Rd, Galway, Ireland
[4] Lund Univ, Dept Biol, Microbiol Grp, Solvegatan 35, SE-22362 Lund, Sweden
基金
瑞典研究理事会;
关键词
MICROBIAL FUEL-CELL; REDOX POLYMERS; ELECTROCHEMICAL COMMUNICATION; TRANSFER MECHANISMS; OXYGEN REDUCTASES; MICROORGANISMS; COMMUNITIES; CONSORTIA; QUINONES; SURFACES;
D O I
10.1021/acs.biochem.8b00600
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extracellular electron transfer (EET) in microbial cells is essential for certain biotechnological applications and contributes to the biogeochemical cycling of elements and syntrophic microbial metabolism in complex natural environments. The Gram-positive lactic acid bacterium Enterococcus faecalis, an opportunistic human pathogen, is shown to be able to transfer electrons generated in fermentation metabolism to electrodes directly and indirectly via mediators. By exploiting E. faecalis wild-type and mutant cells, we demonstrate that reduced demethylmenaquinone in the respiratory chain in the bacterial cytoplasmic membrane is crucial for the EET. Heme proteins are not involved, and cytochrome bd oxidase activity was found to attenuate EET. These results are significant for the mechanistic understanding of EET in bacteria and for the design of microbial electrochemical systems. The basic findings infer that in dense microbial communities, such as in biofilm and in the large intestine, metabolism in E. faecalis and similar Gram-positive lactic acid bacteria might be electrically connected to other microbes. Such a transcellular electron transfer might confer syntrophic metabolism that promotes growth and other activities of bacteria in the microbiota of humans and animals.
引用
收藏
页码:4597 / 4603
页数:7
相关论文
共 53 条
[1]   Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J].
Abidian, Mohammad Reza ;
Martin, David C. .
BIOMATERIALS, 2008, 29 (09) :1273-1283
[2]   Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell [J].
Barrière, F ;
Ferry, Y ;
Rochefort, D ;
Leech, D .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (03) :237-241
[3]   In Vitro Assembly of Catalase [J].
Baureder, Michael ;
Barane, Elisabeth ;
Hederstedt, Lars .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (41) :28411-28420
[4]   Heme Proteins in Lactic Acid Bacteria [J].
Baureder, Michael ;
Hederstedt, Lars .
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 62, 2013, 62 :1-43
[5]   Genes Important for Catalase Activity in Enterococcus faecalis [J].
Baureder, Michael ;
Hederstedt, Lars .
PLOS ONE, 2012, 7 (05)
[6]   The cytochrome bd respiratory oxygen reductases [J].
Borisov, Vitaliy B. ;
Gennis, Robert B. ;
Hemp, James ;
Verkhovsky, Michael I. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2011, 1807 (11) :1398-1413
[7]   The Multiple Evolutionary Histories of Dioxygen Reductases: Implications for the Origin and Evolution of Aerobic Respiration [J].
Brochier-Armanet, Celine ;
Talla, Emmanuel ;
Gribaldo, Simonetta .
MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (02) :285-297
[8]  
Cheng QW, 2016, ENVIRON SCI-PROC IMP, V18, P968, DOI [10.1039/C6EM00219F, 10.1039/c6em00219f]
[9]   Electrical Wiring of Live, Metabolically Enhanced Bacillus subtilis Cells with Flexible Osmium-Redox Polymers [J].
Coman, Vasile ;
Gustavsson, Tobias ;
Finkelsteinas, Arnonas ;
von Wachenfeldt, Claes ;
Hagerhall, Cecilia ;
Gorton, Lo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (44) :16171-16176
[10]   Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials [J].
Dang, Yan ;
Holmes, Dawn E. ;
Zhao, Zhiqiang ;
Woodard, Trevor L. ;
Zhang, Yaobin ;
Sun, Dezhi ;
Wang, Li-Ying ;
Nevin, Kelly P. ;
Lovley, Derek R. .
BIORESOURCE TECHNOLOGY, 2016, 220 :516-522