Topology optimization of photonic structures for all-angle negative refraction

被引:20
作者
Meng, Fei [1 ,3 ]
Li, Shuo [2 ]
Lin, Han [2 ]
Jia, Baohua [2 ]
Huang, Xiaodong [1 ]
机构
[1] RMIT Univ, Sch Engn, Ctr Innovat Struct & Mat, GPO Box 2476, Melbourne, Vic 3001, Australia
[2] Swinburne Univ Technol, Fac Sci Engn & Technol, Ctr Microphoton, POB 218, Hawthorn, Vic 3122, Australia
[3] Cent S Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
基金
澳大利亚研究理事会;
关键词
Topology optimization; Photonic crystal; Negative refraction; Bi-directional evolutionary structural optimization (BESO); BAND-GAP STRUCTURES; LEVEL-SET; COMPOSITE-MATERIALS; CRYSTALS; DESIGN; METAMATERIALS; MICROSTRUCTURES; LIGHT; INDEX; LENS;
D O I
10.1016/j.finel.2016.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a new topology optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method to design photonic crystals with broad all-angle negative refraction (AANR) frequency range. The photonic crystals are assumed to be two-dimensional periodical structures, which consist of dielectric materials and air. The conditions for the occurrence of AANR are identified and the design objective is to enlarge the AANR frequency range. The BESO algorithm is proposed based on finite element analysis for band diagrams of photonic crystals and the derived sensitivity numbers. Starting from a simple initial design without any AANR, BESO gradually re-distributes the dielectric materials within the periodical unit cell so that the AANR property emerges and its frequency range is enlarged accordingly. The numerical results show that the proposed BESO algorithm can effectively obtain AANR photonic crystals with novel patterns. The effects of dielectric permittivity contrast of two constituent materials, mesh-refinement and filter are discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 42 条
  • [1] Topology optimization of metallic devices for microwave applications
    Aage, N.
    Mortensen, N. A.
    Sigmund, O.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (02) : 228 - 248
  • [2] [Anonymous], SOVIET PHYS USPEKHI
  • [3] Bendse Martin P., 1989, Struct Optim, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
  • [4] Material interpolation schemes in topology optimization
    Bendsoe, MP
    Sigmund, O
    [J]. ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) : 635 - 654
  • [5] Negative refraction by photonic crystals
    Cubukcu, E
    Aydin, K
    Ozbay, E
    Foteinopoulou, S
    Soukoulis, CM
    [J]. NATURE, 2003, 423 (6940) : 604 - 605
  • [6] Magnetic metamaterials at telecommunication and visible frequencies
    Enkrich, C
    Wegener, M
    Linden, S
    Burger, S
    Zschiedrich, L
    Schmidt, F
    Zhou, JF
    Koschny, T
    Soukoulis, CM
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (20)
  • [7] Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
    Huang, X.
    Xie, Y. M.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (14) : 1039 - 1049
  • [8] Topology optimization of compliant mechanisms with desired structural stiffness
    Huang, X.
    Li, Y.
    Zhou, S. W.
    Xie, Y. M.
    [J]. ENGINEERING STRUCTURES, 2014, 79 : 13 - 21
  • [9] Topology optimization of microstructures of cellular materials and composites for macrostructures
    Huang, X.
    Zhou, S. W.
    Xie, Y. M.
    Li, Q.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2013, 67 : 397 - 407
  • [10] Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity
    Huang, X.
    Xie, Y. M.
    Jia, B.
    Li, Q.
    Zhou, S. W.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 46 (03) : 385 - 398