Impact ionization in HgCdTe avalanche photodiode optimized to 8 μm cut-off wavelength at 230 K

被引:8
作者
Kopytko, M. [1 ]
Sobieski, J. [1 ,2 ]
Xie, R. [3 ]
Jozwikowski, K. [4 ]
Martyniuk, P. [1 ]
机构
[1] Mil Univ Technol, Inst Appl Phys, 2 Kaliskiego St, PL-00908 Warsaw, Poland
[2] Vigo Syst SA, 129-133 Poznanska St, PL-05850 Ozarow Mazowiecki, Poland
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, 500 Yu Tian Rd, Shanghai 200083, Peoples R China
[4] Mil Univ Technol, Inst Mat Sci & Engn, 2 Kaliskiego St, PL-00908 Warsaw, Poland
关键词
Infrared detectors; Avalanche photodiodes; Impact ionization; HgCdTe; NOISE;
D O I
10.1016/j.infrared.2021.103704
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
If the impact ionization occurs in a region of high electrical field then it can result in avalanche multiplication of carriers. This process is used in avalanche photodiodes enabling individual photons to be detected when the incident flux of light is very low. HgCdTe is an almost ideal material for avalanche photodiodes, however to achieve the highest performance in near-room temperatures, a careful design of device structure is needed, to reach the highest performance in near-room temperatures. N+-nu-p-P+ photodiode meets the requirements of the separated absorption and multiplication regions. This paper describes the results of research aimed at investigation of the impact ionization mechanism in HgCdTe N+-nu-p-P+ photodiode optimized for 8 mu m cut-off wavelength at 230 K. The results show that the parameters of the nu-region greatly influenced on the distribution of the electric field and the generation rate due to the impact ionization. In addition, nu-region has the effect on reduction of undesirable tunneling in the space charge region. For this purpose, it is necessary to keep the doping in this region as low as possible and to extend the energy gap in relation to the absorbing region.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] NONEQUILIBRIUM DEVICES FOR INFRARED DETECTION
    ASHLEY, T
    ELLIOTT, CT
    [J]. ELECTRONICS LETTERS, 1985, 21 (10) : 451 - 452
  • [2] MWIR HgCdTe avalanche photodiodes
    Beck, JD
    Wan, CF
    Kinch, MA
    Robinson, JE
    [J]. MATERIALS FOR INFRARED DETECTORS, 2001, 4454 : 188 - 197
  • [3] Improved local field model for HgCdTe electron avalanche photodiode
    Cheng Yushun
    Chen Lu
    Guo Huijun
    Lin Chun
    He Li
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 101 : 156 - 161
  • [4] MBE growth of HgCdTe avalanche photodiode structures for low-noise 1.55 μm photodetection
    de Lyon, TJ
    Baumgratz, B
    Chapman, G
    Gordon, E
    Hunter, AT
    Jack, M
    Jensen, JE
    Johnson, W
    Johs, B
    Kosai, K
    Larsen, W
    Olson, GL
    Sen, M
    Walker, B
    Wu, OK
    [J]. JOURNAL OF CRYSTAL GROWTH, 1999, 201 : 980 - 984
  • [5] NONEQUILIBRIUM MODES OF OPERATION OF NARROW-GAP SEMICONDUCTOR-DEVICES
    ELLIOTT, CT
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1990, 5 : S30 - S37
  • [6] Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design
    He, Jiale
    Wang, Peng
    Li, Qing
    Wang, Fang
    Gu, Yue
    Shen, Chuan
    Chen, Lu
    Martyniuk, Piotr
    Rogalski, Antoni
    Chen, Xiaoshuang
    Lu, Wei
    Hu, Weida
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (05) : 2001 - 2007
  • [7] Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes
    Jozwikowski, K.
    Kopytko, M.
    Rogalski, A.
    Jozwikowska, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [8] Kinch M.A., 2007, FUNDAMENTALS INFRARE, P110
  • [9] HgCdTe electron avalanche photodiodes
    Kinch, MA
    Beck, JD
    Wan, CF
    Ma, F
    Campbell, J
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 630 - 639
  • [10] Kurata M., 1982, NUMERICAL ANAL SEMIC