Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping

被引:22
作者
Cavalcanti, M. M. [1 ]
Domingos Cavalcanti, V. N. [1 ]
Komornik, V. [2 ]
Rodrigues, J. H. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Strasbourg, Dept Math, F-67084 Strasbourg, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 05期
关键词
KdV-Burgers equation; Well-posedness; Stabilization by feedback; Decay rate; DE-VRIES EQUATION; STABILIZATION;
D O I
10.1016/j.anihpc.2013.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the KdV Burgers equation u(t) + u(xxx) - u(xx) + lambda u + uu(x) = 0 and its linearized version u(t) + u(xxx) - u(xx) + lambda u = 0 on the whole real line. We investigate their well-posedness their exponential stability when A is an indefinite damping. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1079 / 1100
页数:22
相关论文
共 27 条
[1]   DECAY OF SOLUTIONS OF SOME NONLINEAR-WAVE EQUATIONS [J].
AMICK, CJ ;
BONA, JL ;
SCHONBEK, ME .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :1-49
[2]   SOLUTIONS OF KORTEWEG-DEVRIES EQUATION IN FRACTIONAL ORDER SOBOLEV SPACES [J].
BONA, J ;
SCOTT, R .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (01) :87-99
[3]   Forced oscillations of a damped Korteweg-De Vries equation in a quarter plane [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (03) :369-400
[4]  
Bubnov B A, 1980, Differential Equations, V16, P24
[5]   Decay of Solutions to Damped Korteweg-de Vries Type Equation [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Faminskii, Andrei ;
Natali, Fabio .
APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (02) :221-251
[6]   The generalized Korteweg-de Vries-Burgers equation in H2(R) [J].
Dlotko, Tomasz .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :721-732
[7]   Odd-order quasilinear evolution equations posed on a bounded interval [J].
Faminskii, Andrei V. ;
Larkin, Nikolai A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (01) :67-77
[8]  
Faminskii AV, 2010, ELECTRON J DIFFER EQ
[9]  
Goubet O., 2007, ADV DIFFER EQU, V12, P817
[10]   On the boundary-value problem for the Korteweg-de Vries equation [J].
Hayashi, N ;
Kaikina, EI ;
Guardado, JL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2039) :2861-2884