Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification

被引:90
作者
Guan, Hao [1 ,2 ]
Liu, Yunbi [1 ,2 ,3 ]
Yang, Erkun [1 ,2 ]
Yap, Pew-Thian [1 ,2 ]
Shen, Dinggang [1 ,2 ]
Liu, Mingxia [1 ,2 ]
机构
[1] Univ North Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[2] Univ North Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
[3] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
关键词
Brain disorder; Structural MRI; Harmonization; Domain adaptation; Attention; ALZHEIMERS-DISEASE; FEATURE REPRESENTATION; CLASSIFICATION; BIOMARKERS;
D O I
10.1016/j.media.2021.102076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD(2)A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD(2)A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Unsupervised Domain Adaptation to Classify Medical Images Using Zero-Bias Convolutional Auto-Encoders and Context-Based Feature Augmentation [J].
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan ;
Kim, Jinman .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (07) :2385-2394
[2]  
[Anonymous], 2013, Int. Conf. Mach. Learn
[3]  
[Anonymous], 2014, 27THINT C NEURAL INF
[4]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[5]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817
[6]   Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease [J].
Chincarini, Andrea ;
Bosco, Paolo ;
Calvini, Piero ;
Gemme, Gianluca ;
Esposito, Mario ;
Olivieri, Chiara ;
Rei, Luca ;
Squarcia, Sandro ;
Rodriguez, Guido ;
Bellotti, Roberto ;
Cerello, Piergiorgio ;
De Mitri, Ivan ;
Retico, Alessandra ;
Nobili, Flavio .
NEUROIMAGE, 2011, 58 (02) :469-480
[7]   Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data [J].
Cho, Youngsang ;
Seong, Joon-Kyung ;
Jeong, Yong ;
Shin, Sung Yong .
NEUROIMAGE, 2012, 59 (03) :2217-2230
[8]   Multi-site harmonization of 7 tesla MRI neuroimaging protocols [J].
Clarke, William T. ;
Mougin, Olivier ;
Driver, Ian D. ;
Rua, Catarina ;
Morgan, Andrew T. ;
Asghar, Michael ;
Clare, Stuart ;
Francis, Susan ;
Wise, Richard G. ;
Rodgers, Christopher T. ;
Carpenter, Adrian ;
Muir, Keith ;
Bowtell, Richard .
NEUROIMAGE, 2020, 206
[9]  
Csurka G, 2017, ADV COMPUT VIS PATT, P1, DOI 10.1007/978-3-319-58347-1
[10]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781