Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

被引:31
|
作者
Schoen, Nino [1 ,2 ]
Gunduz, Deniz Cihan [1 ,2 ]
Yu, Shicheng [1 ,2 ]
Tempel, Hermann [1 ]
Schierholz, Roland [1 ]
Hausen, Florian [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, IEK 9, Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
[3] Julich Aachen Res Alliance, Sect JARA Energy, D-52425 Julich, Germany
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2018年 / 9卷
关键词
correlative microscopy; electrochemical strain microscopy (ESM); Li1.3Al0.3Ti1.7(PO4)(3) (LATP); scanning electron microscopy (SEM); solid state electrolytes (SSE); IONIC-CONDUCTIVITY; FORCE MICROSCOPY; LITHIUM; SINTERABILITY; DIFFUSION; TI;
D O I
10.3762/bjnano.9.148
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Correlative microscopy has been used to investigate the relationship between Li-ion conductivity and the microstructure of lithium aluminum titanium phosphate (Li1.3Al0.3Ti1.7(PO4)(3), LATP) with high spatial resolution. A key to improvement of solid state electrolytes such as LATP is a better understanding of interfacial and ion transport properties on relevant length scales in the nanometer to micrometer range. Using common techniques, such as electrochemical impedance spectroscopy, only global information can be obtained. In this work, we employ multiple microscopy techniques to gain local chemical and structural information paired with local insights into the Li-ion conductivity based on electrochemical strain microscopy (ESM). Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) have been applied at identical regions to identify microstructural components such as an AlPO4 secondary phase. We found significantly lower Li-ion mobility in the secondary phase areas as well as at grain boundaries. Additionally, various aspects of signal formation obtained from ESM for solid state electrolytes are discussed. We demonstrate that correlative microscopy is an adjuvant tool to gain local insights into interfacial properties of energy materials.
引用
收藏
页码:1564 / 1572
页数:9
相关论文
共 50 条
  • [21] Influence of Liquid Solutions on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes
    Huang, Yi
    Jiang, Yue
    Zhou, Yuxi
    Hu, Zhiwei
    Zhu, Xiaohong
    CHEMELECTROCHEM, 2019, 6 (24): : 6016 - 6026
  • [22] Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity
    Waetzig, Katja
    Rost, Axel
    Heubner, Christian
    Coeler, Matthias
    Nikolowski, Kristian
    Wolter, Mareike
    Schilm, Jochen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818
  • [23] All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte
    Sharma, Shrishti
    Singh, M. Dinachandra
    Dalvi, Anshuman
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [24] Kinetic Analysis of Crystallization in Li1.3Al0.3Ti1.7(PO4)3 Glass Ceramics
    Davis, Calvin, III
    Pertuit, Andre L.
    Nino, Juan C.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (10) : 3260 - 3266
  • [25] Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Hallopeau, Leopold
    Bregiroux, Damien
    Rousse, Gwenaelle
    Portehault, David
    Stevens, Philippe
    Toussaint, Gwenaelle
    Laberty-Robert, Christel
    JOURNAL OF POWER SOURCES, 2018, 378 : 48 - 52
  • [26] Effect of boron-based glass additives on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Tang, Yi
    Hao, Honglei
    Lan, Yu
    Jin, Li
    Wei, Xiaoyong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [27] Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries
    Li, Shuai
    Lu, Jiaze
    Geng, Zhen
    Chen, Yue
    Yu, Xiqian
    He, Meng
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1195 - 1202
  • [28] A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3 solid–state electrolyte for lithium-oxygen batteries
    Yaqi Ren
    Hao Deng
    Hong Zhao
    Zheng Zhou
    Zhaohuan Wei
    Ionics, 2020, 26 : 6049 - 6056
  • [29] Enhanced ionic conductivity of composite solid electrolyte by directionally ordered structures of linear Li1.3Al0.3Ti1.7(PO4)3
    Li, You
    Tang, Mulan
    Xu, Shuxin
    Zhang, Shuchao
    Zhai, Yuxin
    Yin, Jiarong
    Zou, Zhengguang
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 114 : 126 - 133
  • [30] Hybrid Electrolyte of Li1.3Al0.3Ti1.7(PO4)3 Nanofibers and Cross-linked Gel Electrolyte for Li Metal Batteries
    Choi, Hyunji
    Kwon, Hyeokjin
    Kim, Hee-Tak
    ACS APPLIED ENERGY MATERIALS, 2022, 6 (02) : 802 - 811