TiO2-ZnO photocatalysts synthesized by sol-gel auto-ignition technique for hydrogen production

被引:38
作者
Al-Mayman, Sulaiman I. [1 ]
Al-Johani, Meshal S. [1 ]
Mohamed, Mohamed Mokhtar [2 ]
Al-Zeghayer, Yousef S. [3 ]
Ramay, Shahid M. [4 ]
Al-Awadi, Abdulrahman S. [3 ]
Soliman, Moustafa A. [5 ]
机构
[1] KACST, POB 6086, Riyadh 11442, Saudi Arabia
[2] Benha Univ, Fac Sci, Dept Chem, Banha, Egypt
[3] KSU, Dept Chem Engn, POB 800, Riyadh 11421, Saudi Arabia
[4] KSU, Dept Phys & Astron, POB 2455, Riyadh 11451, Saudi Arabia
[5] British Univ Egypt, Dept Chem Engn, Cairo 11837, Egypt
关键词
Hydrogen production; Photo-catalysts; TiO2-ZnO; Water splitting; WATER; ZNO; GENERATION; DEGRADATION; REMOVAL; DYE;
D O I
10.1016/j.ijhydene.2016.11.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work investigates Zn doped TiO2 (1.0, 5.0, 10.0, 12.0 and 30.0 wt.% Zn) photo catalysts; prepared by sol gel auto-ignition method, which were systematically investigated to configure their structural, surface, optical and morphological properties via using X-ray diffractometer (XRD), Scanning electron microscopy (SEM) with energy dispersive Xray spectroscopy (EDX), Fourier Transform Infrared spectrometer (FTIR), and UV-Vis spectrophotometer. The photocatalytic H-2 evolution using the TiO2-ZnO suspensions was evaluated in a 25 vol.% aqueous ethanol medium using UV illumination (Hg lamp lambda = 254 nm, 2.2 mW/cm(2)). The Zn+2 concentrations utilized to prepare TiO2-ZnO nano composites were found to have significant effects on specific surface areas, energy band gaps (Eg), efficient separation of charged pairs and thus affected the photocatalytic performances. The photocatalytic activity of the TiO2-10 wt.% ZnO composite has reached an optimal H-2 production of 1048 mu mol h(-1) exceeding those of the pure TiO2 (151 mu mol h(-1)) and TiO2 P25 (595 mu mol h(-1) photocatalysts. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5016 / 5025
页数:10
相关论文
共 48 条
[1]  
AHN KS, 2008, APPL PHYS LETT, V93
[2]  
[Anonymous], 2009, XTERT HIGHSCORE PLUS
[3]   Major Technical Barriers to a "Hydrogen Economy" [J].
Balat, M. ;
Kirtay, E. .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2010, 32 (09) :863-876
[4]   Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents [J].
Bernabeu, A. ;
Vercher, R. F. ;
Santos-Juanes, L. ;
Simon, P. J. ;
Lardin, C. ;
Martinez, M. A. ;
Vicente, J. A. ;
Gonzalez, R. ;
Llosa, C. ;
Arques, A. ;
Amat, A. M. .
CATALYSIS TODAY, 2011, 161 (01) :235-240
[5]   N-doped TiO2 from TiCl3 for photodegradation of air pollutants [J].
Bianchi, Claudia L. ;
Cappelletti, Giuseppe ;
Ardizzone, Silvia ;
Gialanella, Stefano ;
Naldoni, Alberto ;
Oliva, Cesare ;
Pirola, Carlo .
CATALYSIS TODAY, 2009, 144 (1-2) :31-36
[6]   Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants [J].
Castro-Lopez, C. A. ;
Centeno, A. ;
Giraldo, S. A. .
CATALYSIS TODAY, 2010, 157 (1-4) :119-124
[7]   Characterization of ZnO and TiO2 catalysts to hydrogen production using thermoprogrammed desorption of methanol [J].
Cesar, Deborah V. ;
Robertson, Rachel F. ;
Resende, Neuman S. .
CATALYSIS TODAY, 2008, 133 :136-141
[8]  
D'Elia D., 2011, THESIS
[9]   Hydrogen formation in ethanol reforming on supported noble metal catalysts [J].
Erdohelyi, Andras ;
Rasko, Janos ;
Kecskes, Tamara ;
Toth, Mariann ;
Doemoek, Marta ;
Baan, Kornelia .
CATALYSIS TODAY, 2006, 116 (03) :367-376
[10]  
Fang W, 2016, INT J HYDROGEN ENERG, Vxxx, P1