BOUNDARY LAYERS AND STABILIZATION OF THE SINGULAR KELLER-SEGEL SYSTEM

被引:22
作者
Peng, Hongyun [1 ]
Wang, Zhi-An [2 ]
Zhao, Kun [3 ]
Zhu, Changjiang [4 ]
机构
[1] Guangdong Univ Technol, Fac Appl Math, Guangzhou 510006, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[3] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Chemotaxis; vanishing diffusion limit; boundary layer; effective viscous flux; weighted energy estimates; large-time behavior; NAVIER-STOKES EQUATIONS; HYPERBOLIC-PARABOLIC SYSTEM; TRAVELING-WAVES; NONLINEAR STABILITY; MATHEMATICAL-MODEL; CONSERVATION-LAWS; DIFFUSION LIMIT; GLOBAL DYNAMICS; WELL-POSEDNESS; CHEMOTAXIS;
D O I
10.3934/krm.2018042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The original Keller-Segel system proposed in [23] remains poorly understood in many aspects due to the logarithmic singularity. As the chemical consumption rate is linear, the singular Keller-Segel model can be converted, via the Cole-Hopf transformation, into a system of viscous conservation laws without singularity. However the chemical diffusion rate parameter epsilon now plays a dual role in the transformed system by acting as the coefficients of both diffusion and nonlinear convection. In this paper, we first consider the dynamics of the transformed Keller-Segel system in a bounded interval with time-dependent Dirichlet boundary conditions. By imposing appropriate conditions on the boundary data, we show that boundary layer profiles are present as epsilon -> 0 and large-time profiles of solutions are determined by the boundary data. We employ weighted energy estimates with the "effective viscous flux" technique to establish the uniform-in-epsilon estimates to show the emergence of boundary layer profiles. For asymptotic dynamics of solutions, we develop a new idea by exploring the convexity of an entropy expansion to get the basic L-1-estimate. We the obtain the corresponding results for the original Keller-Segel system by reversing the Cole-Hopf transformation. Numerical simulations are performed to interpret our analytical results and their implications.
引用
收藏
页码:1085 / 1123
页数:39
相关论文
共 50 条
  • [41] Global Boundedness in a Logarithmic Keller-Segel System
    Liu, Jinyang
    Tian, Boping
    Wang, Deqi
    Tang, Jiaxin
    Wu, Yujin
    MATHEMATICS, 2023, 11 (12)
  • [42] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194
  • [43] SINGULAR CONVERGENCE OF NONLINEAR HYPERBOLIC CHEMOTAXIS SYSTEMS TO KELLER-SEGEL TYPE MODELS
    Di Francesco, Marco
    Donatelli, Donatella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01): : 79 - 100
  • [44] Solvability of the fractional hyperbolic Keller-Segel system
    Huaroto, Gerardo
    Neves, Wladimir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 74
  • [45] Slow Grow-up in a Quasilinear Keller-Segel System
    Winkler, Michael
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1677 - 1702
  • [46] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Bezerra, Mario
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (09) : 1827 - 1874
  • [47] Cauchy Problem of a System of Parabolic Conservation Laws Arising From the Singular Keller-Segel Model in Multi-Dimensions
    Wang, Dehua
    Wang, Zhian
    Zhao, Kun
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (01) : 1 - 47
  • [48] Keller-Segel Chemotaxis Models: A Review
    Gurusamy Arumugam
    Jagmohan Tyagi
    Acta Applicandae Mathematicae, 2021, 171
  • [49] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [50] Keller-Segel Chemotaxis Models: A Review
    Arumugam, Gurusamy
    Tyagi, Jagmohan
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)