On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids

被引:85
|
作者
Kim, Hyungdae [1 ]
Ahn, Ho Seon [2 ]
Kim, Moo Hwan [2 ]
机构
[1] Kyung Hee Univ, Dept Nucl Engn, Yongin 446701, South Korea
[2] POSTECH, Dept Mech Engn, Pohang 790784, Gyungbuk, South Korea
来源
关键词
alumina; boiling; evaporation; heat transfer; multiphase flow; nanofluidics; nanoparticles; titanium compounds; wetting; NANO-FLUIDS; SURFACE WETTABILITY; WATER; NANOPARTICLES; SUSPENSIONS; SILICA; CRISIS; CHF;
D O I
10.1115/1.4000746
中图分类号
O414.1 [热力学];
学科分类号
摘要
The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01 vol % were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux
    Kim, S. J.
    Bang, I. C.
    Buongiorno, J.
    Hu, L. W.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (19-20) : 4105 - 4116
  • [32] Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review
    Kim, Hyungdae
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 18
  • [33] Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review
    Hyungdae Kim
    Nanoscale Research Letters, 6
  • [34] Observation of critical heat flux mechanism in horizontal pool boiling of saturated water
    Chu, In-Cheol
    No, Hee Cheon
    Song, Chul-Hwa
    Euh, Dong Jin
    NUCLEAR ENGINEERING AND DESIGN, 2014, 279 : 189 - 199
  • [35] Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media
    Mori, Shoji
    Okuyama, Kunito
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2009, 35 (10) : 946 - 951
  • [36] Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina
    Feng, Bo
    Weaver, Keith
    Peterson, G. P.
    APPLIED PHYSICS LETTERS, 2012, 100 (05)
  • [37] Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling
    Song, Youngsup
    Gong, Shuai
    Vaartstra, Geoffrey
    Wang, Evelyn N.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (10) : 12629 - 12635
  • [38] Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability
    Lee, Jung Shin
    Lee, Joon Sang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 96 : 504 - 512
  • [39] Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media
    Mori, Shoji
    Okuyama, Kunito
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2009, 75 (758): : 1896 - 1902
  • [40] The effects of nanoparticles on pool boiling and critical heat flux
    Srinivas, T.
    Varma, P. Adarsh
    Priya, Ch. Satya
    Prashanth, M.
    Mukesh, P.
    Nandan, B. Sai Sri
    Srinivas, G.
    INDIAN JOURNAL OF PHYSICS, 2024, : 1509 - 1518