A CBF-based event-related brain activation paradigm: Characterization of impulse-response function and comparison to BOLD

被引:58
作者
Yang, YH [1 ]
Engelien, W
Pan, H
Xu, S
Silbersweig, DA
Stern, E
机构
[1] Cornell Univ, Weill Med Coll, Dept Psychiat, Funct Neuroimaging Lab, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
关键词
event-related functional MRI; brain perfusion imaging; cerebral blood flow; brain hemodynamic-neuronal response;
D O I
10.1006/nimg.2000.0625
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A perfusion-based event-related functional MRI method for the study of brain activation is presented. In this method, cerebral blood flow (CBF) was measured using a recently developed multislice arterial spin-labeling (ASL) perfusion imaging method with rapid spiral scanning. Temporal resolution of the perfusion measurement was substantially improved by employing intertrial subtraction and stimulus-shifting schemes. Perfusion and blood oxygenation level-dependent (BOLD) signals were obtained simultaneously by subtracting or adding the control and labeled images, respectively, in the same data sets. The impulse response function (IRF) of perfusion during brain activation was characterized for multiple stimulus durations and compared to the simultaneously acquired BOLD response. The CBF response curve preceded the BOLD curve by 0.21 s in the rising phase and 0.64 s in the falling phase. Linear additivity of the CBF and BOLD responses was assessed with rapidly repeated stimulations within single trials, and departure from linearity was found in both responses, characterized as attenuated amplitude and delayed rising time. Event-related visual and sensorimotor activation experiments were successfully performed with the new perfusion technique, (C) 2000 Academic Press.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 49 条
[1]   Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow [J].
Alsop, DC ;
Detre, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (06) :1236-1249
[2]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[3]   Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging [J].
Buckner, RL ;
Bandettini, PA ;
OCraven, KM ;
Savoy, RL ;
Petersen, SE ;
Raichle, ME ;
Rosen, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14878-14883
[4]  
Cohen J., 1998, Statistical Power Analysis for the Behavioral Sciences, V2nd
[5]   Parametric analysis of fMRI data using linear systems methods [J].
Cohen, MS .
NEUROIMAGE, 1997, 6 (02) :93-103
[6]  
Dale AM, 1997, HUM BRAIN MAPP, V5, P329, DOI 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO
[7]  
2-5
[8]   PERFUSION IMAGING [J].
DETRE, JA ;
LEIGH, JS ;
WILLIAMS, DS ;
KORETSKY, AP .
MAGNETIC RESONANCE IN MEDICINE, 1992, 23 (01) :37-45
[9]   QUALITATIVE MAPPING OF CEREBRAL BLOOD-FLOW AND FUNCTIONAL LOCALIZATION WITH ECHO-PLANAR MR-IMAGING AND SIGNAL TARGETING WITH ALTERNATING RADIO-FREQUENCY [J].
EDELMAN, RR ;
SIEWERT, B ;
DARBY, DG ;
THANGARAJ, V ;
NOBRE, AC ;
MESULAM, MM ;
WARACH, S .
RADIOLOGY, 1994, 192 (02) :513-520
[10]   ANALYSIS OF FMRI TIME-SERIES REVISITED [J].
FRISTON, KJ ;
HOLMES, AP ;
POLINE, JB ;
GRASBY, PJ ;
WILLIAMS, SCR ;
FRACKOWIAK, RSJ ;
TURNER, R .
NEUROIMAGE, 1995, 2 (01) :45-53