Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography

被引:83
作者
Antonik, Piotr [1 ,2 ,3 ]
Gulina, Marvyn [4 ]
Pauwels, Jael [5 ,6 ]
Massar, Serge [6 ]
机构
[1] Univ Paris Saclay, CentraleSupelec, Campus Metz, F-57070 Metz, France
[2] CentraleSupelec, LMOPS EA Lab 4423, F-57070 Metz, France
[3] Univ Lorraine, F-57070 Metz, France
[4] Univ Namur, Namur Inst Complex Syst, B-5000 Namur, Belgium
[5] Vrije Univ Brussels, Appl Phys Res Grp, B-1050 Brussels, Belgium
[6] Univ Libre Bruxelles, Lab Informat Quant, B-1050 Brussels, Belgium
关键词
COMMUNICATION; SYSTEMS; ENCRYPTION; IMPLEMENTATION; INFORMATION;
D O I
10.1103/PhysRevE.98.012215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the machine learning approach known as reservoir computing, it is possible to train one dynamical system to emulate another. We show that such trained reservoir computers reproduce the properties of the attractor of the chaotic system sufficiently well to exhibit chaos synchronization. That is, the trained reservoir computer, weakly driven by the chaotic system, will synchronize with the chaotic system. Conversely, the chaotic system, weakly driven by a trained reservoir computer, will synchronize with the reservoir computer. We illustrate this behavior on the Mackey-Glass and Lorenz systems. We then show that trained reservoir computers can be used to crack chaos based cryptography and illustrate this on a chaos cryptosystem based on the Mackey-Glass system. We conclude by discussing why reservoir computers are so good at emulating chaotic systems.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]   Cryptanalyzing a discrete-time chaos synchronization secure communication system [J].
Alvarez, G ;
Montoya, F ;
Romera, M ;
Pastor, G .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :689-694
[3]  
[Anonymous], 2002, Technical report 152
[4]   Chaotic cryptosystems: Cryptanalysis and identifiability [J].
Anstett, Floriane ;
Millerioux, Gilles ;
Bloch, Gerard .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (12) :2673-2680
[5]   Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems [J].
Antonik, Piotr ;
Haelterman, Marc ;
Massar, Serge .
PHYSICAL REVIEW APPLIED, 2017, 7 (05)
[6]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[7]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[8]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[9]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[10]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4