A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem

被引:0
|
作者
Lyu, Xing-Long [1 ,2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
关键词
Structure-preserving algorithm; T-Hamiltonian eigenvalue problem; T-symplectic URV decomposition; periodic QR; SYSTEMS; FORMULATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a structure-preserving algorithm for computing all eigenvalues of the generalized eigenvalue problem BAx = lambda Ex that arises in linear lossless dissipative Hamiltonian descriptor systems, with B being skew-symmetric and A(T)E = E(T)A. We rewrite the problem as BAE(-1)y = lambda y to preserve the symmetry of A(T)E and convert the problem into the equivalent T-Hamiltonian eigenvalue problem Hz = lambda z. Furthermore, T-symplectic URV decomposition and a corresponding periodic QR (PQR) method are proposed to compute all eigenvalues of H. The structurepreserving property ensures that the computed eigenvalues appear pairwise, in the form (lambda, -lambda), as they should. Numerical experiments show that the computed eigenvalues are more accurate and strictly paired than those of the classical QZ method, while the residuals of the eigenpairs are comparable.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [41] Structure-preserving dynamic texture generation algorithm
    Ling-chen Wu
    Dong-yi Ye
    Zhao-jiong Chen
    Neural Computing and Applications, 2021, 33 : 8299 - 8318
  • [42] Structure-preserving Arnoldi-type algorithm for solving eigenvalue problems in leaky surface wave propagation
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Wu, Chin-Tien
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 9947 - 9958
  • [43] A Local Algorithm for Structure-Preserving Graph Cut
    Zhou, Dawei
    Zhang, Si
    Yildirim, Mehmet Yigit
    Alcorn, Scott
    Tong, Hanghang
    Davulcu, Hasan
    He, Jingrui
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 655 - 664
  • [44] A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems
    Li, Tie-Xiang
    Chu, Eric King-wah
    Lin, Wen-Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1733 - 1745
  • [45] Non-dissipative and structure-preserving emulators via spherical optimization
    Dai, Dihan
    Epshteyn, Yekaterina
    Narayan, Akil
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (01) : 494 - 523
  • [46] A new structure-preserving method for dual quaternion Hermitian eigenvalue problems
    Ding, Wenxv
    Li, Ying
    Wei, Musheng
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [47] Structure-Preserving Stabilization for Hamiltonian System and its Applications in Solar Sail
    Xu, Ming
    Xu, Shijie
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (03) : 997 - 1004
  • [48] SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
    Jin, Pengzhan
    Zhang, Zhen
    Zhu, Aiqing
    Tang, Yifa
    Karniadakis, George Em
    NEURAL NETWORKS, 2020, 132 : 166 - 179
  • [49] STRUCTURE-PRESERVING MODEL REDUCTION FOR NONLINEAR PORT-HAMILTONIAN SYSTEMS
    Chaturantabut, S.
    Beattie, C.
    Gugercin, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B837 - B865
  • [50] Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian
    Haine, Ghislain
    Matignon, Denis
    Monteghetti, Florian
    IFAC PAPERSONLINE, 2022, 55 (30): : 424 - 429