A structure-preserving algorithm for the linear lossless dissipative Hamiltonian eigenvalue problem

被引:0
|
作者
Lyu, Xing-Long [1 ,2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Ctr Appl Math, Nanjing 211135, Peoples R China
关键词
Structure-preserving algorithm; T-Hamiltonian eigenvalue problem; T-symplectic URV decomposition; periodic QR; SYSTEMS; FORMULATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a structure-preserving algorithm for computing all eigenvalues of the generalized eigenvalue problem BAx = lambda Ex that arises in linear lossless dissipative Hamiltonian descriptor systems, with B being skew-symmetric and A(T)E = E(T)A. We rewrite the problem as BAE(-1)y = lambda y to preserve the symmetry of A(T)E and convert the problem into the equivalent T-Hamiltonian eigenvalue problem Hz = lambda z. Furthermore, T-symplectic URV decomposition and a corresponding periodic QR (PQR) method are proposed to compute all eigenvalues of H. The structurepreserving property ensures that the computed eigenvalues appear pairwise, in the form (lambda, -lambda), as they should. Numerical experiments show that the computed eigenvalues are more accurate and strictly paired than those of the classical QZ method, while the residuals of the eigenpairs are comparable.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [21] Numerical solution of quadratic eigenvalue problems with structure-preserving methods
    Hwang, TM
    Lin, WW
    Mehrmann, V
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1283 - 1302
  • [22] Dynamics of the spatial restricted three-body problem stabilized by Hamiltonian structure-preserving control
    Tong Luo
    Ming Xu
    Nonlinear Dynamics, 2018, 94 : 1889 - 1905
  • [23] An effective real structure-preserving algorithm for the quaternion indefinite least squares problem
    Meng, Zixiang
    Zhou, Zhihan
    Li, Ying
    Zhang, Fengxia
    NUMERICAL ALGORITHMS, 2024,
  • [24] Real structure-preserving algorithm for quaternion equality constrained least squares problem
    Li, Ying
    Zhang, Yanzhen
    Wei, Musheng
    Zhao, Hong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4558 - 4566
  • [25] A linear eigenvalue algorithm for the nonlinear eigenvalue problem
    Elias Jarlebring
    Wim Michiels
    Karl Meerbergen
    Numerische Mathematik, 2012, 122 : 169 - 195
  • [26] A structure-preserving algorithm for Vlasov-Darwin system conserving charge, canonical momentum, and Hamiltonian
    Shiroto, Takashi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [27] A linear eigenvalue algorithm for the nonlinear eigenvalue problem
    Jarlebring, Elias
    Michiels, Wim
    Meerbergen, Karl
    NUMERISCHE MATHEMATIK, 2012, 122 (01) : 169 - 195
  • [28] Dynamics in the controlled center manifolds by Hamiltonian structure-preserving stabilization
    Luo, Tong
    Xu, Ming
    Dong, Yunfeng
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 149 - 158
  • [29] ASYMPTOTIC ANALYSIS OF A STRUCTURE-PRESERVING INTEGRATOR FOR DAMPED HAMILTONIAN SYSTEMS
    Viorel, Adrian
    Alecsa, Cristian D.
    Pinta, Titus O.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3319 - 3341
  • [30] Structure-preserving discretization of port-Hamiltonian plate models
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    IFAC PAPERSONLINE, 2021, 54 (09): : 359 - 364