TRANSITIVE ACTIONS AND EQUIVARIANT COHOMOLOGY AS AN UNSTABLE A*-ALGEBRA

被引:0
作者
Hauschild, Volker [1 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
transitive actions; Steenrod algebra; equivariant cohomology; homogeneous Kahler manifolds; COMPACT LIE-GROUPS; SPACES;
D O I
10.2140/pjm.2010.245.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graded F(p)-algebra A with action of the Steenrod algebra A* is said to be Steenrod presentable if there is a polynomial ring P = F(p)[u1,..., u(n)] with an action of A* and an A*-invariant ideal I subset of P such that A = P = I and the induced action of A* on P = I is the given one. It is shown that an action phi of a simple compact Lie group G on a homogeneous Kahler manifold X = G/H has a Steenrod presentable equivariant cohomology for almost all primes p if and only if phi is conjugate to the standard action by left translation. Application to the case H = T a maximal torus reproduces a former result of the author: namely, that every topological G-action on G/T is conjugate to the standard action by left translation with isotropy group a maximal torus.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 17 条
[1]   FINITE H-SPACES AND ALGEBRAS OVER THE STEENROD ALGEBRA [J].
ADAMS, JF ;
WILKERSON, CW .
ANNALS OF MATHEMATICS, 1980, 111 (01) :95-143
[2]   MAPS BETWEEN CLASSIFYING SPACES [J].
ADAMS, JF ;
MAHMUD, Z .
INVENTIONES MATHEMATICAE, 1976, 35 :1-41
[3]   A non-fixed point theorem for Hamiltonian Lie group actions [J].
Allday, C ;
Hauschild, V ;
Puppe, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2971-2982
[4]  
Allday C., 1993, CAMBRIDGE STUDIES AD, V32
[6]  
Audin M., 1991, PROGR MATH, V93
[7]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[8]   CONVEXITY PROPERTIES OF THE MOMENT MAPPING [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :491-513
[9]   THE EULER CHARACTERISTIC AS AN OBSTRUCTION TO COMPACT LIE GROUP-ACTIONS [J].
HAUSCHILD, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :549-578
[10]   Locally smooth SU(n+1)-actions on SU(n+1)/S(U(n-1) x U(2)) are unique [J].
Hauschild, V .
TRANSFORMATION GROUPS, 2006, 11 (01) :77-86