GROUND STATES OF THE SCHRODINGER-MAXWELL SYSTEM WITH DIRAC MASS: EXISTENCE AND ASYMPTOTICS

被引:1
作者
Coclite, Giuseppe Maria [1 ]
Holden, Helge [2 ,3 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
[2] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[3] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway
关键词
Schrodinger-Maxwell system; point interaction; CONCENTRATED NONLINEARITY; MAGNETIC-FIELDS; DIMENSION; 3; OPERATORS; EQUATIONS;
D O I
10.3934/dcds.2010.27.117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a non-relativistic charged quantum particle moving in a bounded open set Omega subset of R(3) with smooth boundary under the action of a zero-range potential. In the electrostatic case the standing wave solutions take the form psi(t, x) = u(x) e-(iwt) where u formally satisfies -Delta u + alpha phi u - beta delta(x0) u = wu and the electric potential phi is given by - Delta phi = u(2). We introduce the definition of ground state. We show the existence of such solutions for each beta > 0 and the compactness as beta -> 0.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 17 条
[11]   The Schrodinger-Maxwell system with Dirac mass [J].
Coclite, G. M. ;
Holden, H. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (05) :773-793
[12]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[13]  
Coclite G.M., 2002, Ann. Polon. Math, V79, P21
[14]  
COCLITE GM, 2004, ELECT J DIFFERENTIAL, P1
[15]   CLASSICAL BOUNDS AND LIMITS FOR ENERGY-DISTRIBUTIONS OF HAMILTON OPERATORS IN ELECTROMAGNETIC-FIELDS [J].
COMBES, JM ;
SCHRADER, R ;
SEILER, R .
ANNALS OF PHYSICS, 1978, 111 (01) :1-18
[16]   Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations [J].
Esteban, MJ ;
Georgiev, V ;
Sere, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :265-281
[17]  
Struwe M., 2000, SERIES MODERN SURVEY, V34