Injectable hydrogels self-assembled from oligopeptide-poly(2-methacryloyloxyethyl phosphorylcholine) hybrid graft copolymers for cell scaffolds and controlled release applications

被引:10
作者
Koga, Tomoyuki [1 ]
Matsuoka, Tomoo [1 ]
Morita, Yusuke [2 ]
Higashi, Nobuyuki [1 ]
机构
[1] Doshisha Univ, Dept Mol Chem & Biochem, Fac Sci & Engn, Kyotanabe, Kyoto 6100321, Japan
[2] Doshisha Univ, Dept Biomed Engn, Fac Life & Med Sci, Kyotanabe, Kyoto 6100321, Japan
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 12期
基金
日本学术振兴会;
关键词
SHAPE-MEMORY HYDROGELS; HAIRPIN PEPTIDE HYDROGELS; PROTEIN; POLYMERIZATION; POLYMERS; BEHAVIOR; ACID; GELS;
D O I
10.1039/d1ma00347j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we report the synthesis and characterization of novel peptide based hybrid graft copolymers that can form injectable hydrogels. These hybrid graft copolymers are composed of a biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) main chain and self-assembling oligoalanine-block-poly(ethylene glycol) grafts (grafting ratio (m) = 6, 10, 20, 28, 32, and 40%), which are readily synthesized using a macromonomer by combining the solid phase peptide synthesis and conventional radical polymerization methods. Conformational analyses under a wide range of dilute aqueous solutions (pH 3-10 and 4-70 degrees C) revealed stable beta-sheet formation. With an increase in solution concentration, the graft copolymers, except those with a low grafting ratio of m = 6, formed hydrogels displaying shear-thinning and self-healing behaviors because of the reversible self-assembly property of peptide grafts. Interestingly, the mechanical properties of hybrid graft copolymers were strongly dependent on the grafting density of the hybrid copolymers. Thus, it was observed that an increase in grafting ratio strengthened the inter-polymer network. These features enabled the graft-type hybrids to be used as injectable hydrogels for 3D cell scaffolds and controlled-release applications.
引用
收藏
页码:4068 / 4074
页数:7
相关论文
共 50 条
[1]   Injectable Multidomain Peptide Nanofiber Hydrogel as a Delivery Agent for Stem Cell Secretome [J].
Bakota, Erica L. ;
Wang, Yin ;
Danesh, Farhad R. ;
Hartgerink, Jeffrey D. .
BIOMACROMOLECULES, 2011, 12 (05) :1651-1657
[2]   Shape Memory Hydrogels via Mice liar Copolymerization of Acrylic Acid and n-Octadecyl Acrylate in Aqueous Media [J].
Bilici, Cigdem ;
Okay, Oguz .
MACROMOLECULES, 2013, 46 (08) :3125-3131
[3]   Recent Advances in Shape Memory Soft Materials for Biomedical Applications [J].
Chan, Benjamin Qi Yu ;
Low, Zhi Wei Kenny ;
Heng, Sylvester Jun Wen ;
Chan, Siew Yin ;
Owh, Cally ;
Loh, Xian Jun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) :10070-10087
[4]   Smart Injectable Hydrogels for Cancer Immunotherapy [J].
Chao, Yu ;
Chen, Qian ;
Liu, Zhuang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (02)
[5]   Tuning Gelation Kinetics and Mechanical Rigidity of β-Hairpin Peptide Hydrogels via Hydrophobic Amino Acid Substitutions [J].
Chen, Cuixia ;
Gu, Yanfeng ;
Deng, Li ;
Han, Shuyi ;
Sun, Xing ;
Chen, Yucan ;
Lu, Jian R. ;
Xu, Hai .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) :14360-14368
[6]   pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility [J].
Chiu, Ya-Ling ;
Chen, Sung-Ching ;
Su, Chun-Jen ;
Hsiao, Chun-Wen ;
Chen, Yu-Ming ;
Chen, Hsin-Lung ;
Sung, Hsing-Wen .
BIOMATERIALS, 2009, 30 (28) :4877-4888
[7]   Controlled biodegradation of Self-assembling β-hairpin Peptide hydrogels by proteolysis with matrix metalloproteinase-13 [J].
Giano, Michael C. ;
Pochan, Darrin J. ;
Schneider, Joel P. .
BIOMATERIALS, 2011, 32 (27) :6471-6477
[8]   Double-network hydrogels with extremely high mechanical strength [J].
Gong, JP ;
Katsuyama, Y ;
Kurokawa, T ;
Osada, Y .
ADVANCED MATERIALS, 2003, 15 (14) :1155-+
[9]   Shear-thinning hydrogels for biomedical applications [J].
Guvendiren, Murat ;
Lu, Hoang D. ;
Burdick, Jason A. .
SOFT MATTER, 2012, 8 (02) :260-272
[10]   Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells [J].
Haines-Butterick, Lisa ;
Rajagopal, Karthikan ;
Branco, Monica ;
Salick, Daphne ;
Rughani, Ronak ;
Pilarz, Matthew ;
Lamm, Matthew S. ;
Pochan, Darrin J. ;
Schneider, Joel P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (19) :7791-7796