Global Bifurcation for Nonlinear Elliptic Problems with Gradient Term

被引:0
作者
Wang, Weibing [1 ]
Zuo, Xiaoxin [1 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math, Xiangtan 411201, Hunan, Peoples R China
关键词
Bifurcation; Gradient term; Hardy potential; Positive solution; POSITIVE SOLUTIONS; P-LAPLACIAN; CRITICAL SOBOLEV; EXISTENCE; EXPONENTS; EQUATIONS; DEPENDENCE;
D O I
10.1007/s12346-022-00597-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the bifurcation phenomena for a class of nonlinear elliptic problems with Hardy potential and gradient term. Some results about global continua of positive solutions emanating from bifurcation point from zero or infinity are established.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Unilateral Global Bifurcation for Fourth-Order Problems and Its Applications [J].
Shen, Wenguo .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
[32]   Nonlinear Eigenvalue Problems and Bifurcation for Quasi-Linear Elliptic Operators [J].
Emmanuel Wend-Benedo Zongo ;
Bernhard Ruf .
Mediterranean Journal of Mathematics, 2022, 19
[33]   On a quasilinear elliptic problem with convection term and nonlinear boundary condition [J].
Marano, Salvatore A. ;
Winkert, Patrick .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :159-169
[34]   Multiplicity and Bifurcation Results for a Class of Quasilinear Elliptic Problems with Quadratic Growth on the Gradient [J].
Rendon, Fiorella ;
Soares, Mayra .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (03)
[35]   A global bifurcation for nonlinear inclusions [J].
Kim, In-Sook ;
Kim, Yun-Ho .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (01) :343-348
[36]   Global bifurcation for nonlinear equations [J].
Kim, In-Sook ;
Kim, Yun-Ho .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2362-2368
[37]   A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE GRADIENT ON A HALF SPACE [J].
Aghajani, Asadollah ;
Cowan, Craig ;
Lui, Shiu Hong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (01) :378-391
[38]   POSITIVE SOLUTIONS FOR SINGULAR ELLIPTIC PROBLEMS DEPENDING ON THE GRADIENT [J].
Garbowski, Krzysztof ;
Orpel, Aleksandra .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (11) :4312-4323
[39]   Intervals of bifurcation points for semilinear elliptic problems [J].
Tapia, Jose Carmona ;
Aparicio, Antonio J. Martinez ;
Martinez-Aparicio, Pedro J. .
ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
[40]   A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS WITH A STRONGLY SINGULAR GRADIENT TERM AND A GENERAL DATUM [J].
Giachetti, Daniela ;
Petitta, Francesco ;
Segura de Leon, Sergio .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) :913-948