Improved classification of SAR images by segmentation and fusion with optical images

被引:4
作者
Pellizzeri, TM [1 ]
Oliver, CJ [1 ]
Lombardo, P [1 ]
Bucciarelli, T [1 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
来源
RADAR 2002 | 2002年 / 490期
关键词
D O I
10.1109/RADAR.2002.1174673
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we devise a new fusion technique for single-channel SAR images and optical images. First, a statistical model for both individual and joint distribution of SAR and optical images is provided. Then the corresponding Maximum Likelihood (ML) classifier is derived, and Lower and Upper Bounds to classification performance are introduced. An optimised technique for ML joint segmentation and classification is proposed, showing results close to the Upper Bound. Finally, the effectiveness of the fusion of SAR and optical images is investigated quantitatively, showing performance improvement with respect to using either sensor alone.
引用
收藏
页码:158 / 161
页数:4
相关论文
共 8 条
[1]  
LECKIE DG, 1990, PHOTOGRAMM ENG REM S, V56, P1237
[2]   Optimum detection and segmentation of oil-slicks using polarimetric SAR data [J].
Lombardo, P ;
Oliver, CJ .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2000, 147 (06) :309-321
[3]  
LOMBARDO P, 2001, IEE P RAD SON NAV
[4]  
LOMBARDO P, 2000, RADAR 2000 IEEE INT
[5]  
OLIVER CJ, 1998, UNDERSTANDING SAR IM
[6]  
OLIVER CJ, 1999, SPIE P, V3869
[7]   Detecting a step pattern of change in multitemporal SAR images [J].
Pellizzeri, TM ;
Lombardo, P .
PROCEEDINGS OF THE 2001 IEEE RADAR CONFERENCE, 2001, :294-299
[8]  
Schistad-Solberg A., 1994, IEEE T GEOSCI REMOTE, V32, P768, DOI DOI 10.1109/36.298006