Improving La0.6Sr0.4Co0.2Fe0.8O3-δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3-δ coating

被引:129
作者
Lou, Xiaoyuan [1 ]
Wang, Shizhong [1 ]
Liu, Ze [1 ]
Yang, Lei [1 ]
Liu, Meilin [1 ]
机构
[1] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
Solid oxide fuel cell; LSCF; SSC; Cathode modification; Infiltration; OXIDE FUEL-CELL; LOW-TEMPERATURE SOFCS; DIRECT OXIDATION; ELECTRODES; ANODES; MODEL; HYDROCARBONS; IMPREGNATION; REDUCTION; STABILITY;
D O I
10.1016/j.ssi.2009.06.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LaxSr1-xCoyFe1-yO3-delta (LSCF) represents one of the state-of-the-art cathode materials for solid oxide fuel cells (SOFCs) due primarily to its high ionic and electronic conductivity. In this study, a one-step infiltration process has been developed to deposit, on the surface of a porous LSCF cathode, a thin film (50-100 nm) of Sm0.5Sr0.5CoO3-delta (SSC), which is catalytically more active for oxygen reduction. Electrochemical impedance spectroscopy reveals that the SSC coating has dramatically reduced the polarization resistance of the cathode, achieving area-specific resistances of 0.036 Omega cm(2) and 0.688 Omega cm(2) at 750 degrees C and 550 degrees C, respectively. It has also maintained the stability of LSCF cathodes. In particular, the peak power densities are increased by similar to 22% upon the infiltration of SSC onto the porous LSCF cathodes of our best performing cells. These results demonstrate that a conductive backbone (e.g., LSCF) coated with a catalytic film (e.g., SSC) is an attractive approach to achieving an active and stable SOFC cathode for low-temperature solid oxide fuel cells. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1285 / 1289
页数:5
相关论文
共 29 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[3]   Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes [J].
Baumann, F. S. ;
Fleig, J. ;
Cristiani, G. ;
Stuhlhofer, B. ;
Habermeier, H.-U. ;
Maier, J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (09) :B931-B941
[4]   On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes [J].
Fleig, J .
JOURNAL OF POWER SOURCES, 2002, 105 (02) :228-238
[5]   Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode [J].
Fukunaga, H ;
Koyama, M ;
Takahashi, N ;
Wen, C ;
Yamada, K .
SOLID STATE IONICS, 2000, 132 (3-4) :279-285
[6]  
Gorte RJ, 2000, ADV MATER, V12, P1465, DOI 10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO
[7]  
2-9
[8]   A review of wet impregnation - An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells [J].
Jiang, SP .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 418 (1-2) :199-210
[9]   A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes [J].
Jiang, SP .
SOLID STATE IONICS, 2002, 146 (1-2) :1-22
[10]   Performance of GDC-impregnated Ni anodes of SOFCs [J].
Jiang, SP ;
Zhang, S ;
Zhen, YD ;
Koh, AP .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (09) :A282-A285