A two-qubit photonic quantum processor and its application to solving systems of linear equations

被引:86
作者
Barz, Stefanie [1 ]
Kassal, Ivan [2 ,3 ,4 ]
Ringbauer, Martin [1 ]
Lipp, Yannick Ole [1 ]
Dakic, Borivoje [1 ]
Aspuru-Guzik, Alan [2 ]
Walther, Philip [1 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[4] Univ Queensland, Sch Math & Phys, Ctr Quantum Comp & Commun Technol, Brisbane, Qld 4072, Australia
基金
奥地利科学基金会;
关键词
D O I
10.1038/srep06115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Experimental Quantum Computing to Solve Systems of Linear Equations [J].
Cai, X. -D. ;
Weedbrook, C. ;
Su, Z. -E. ;
Chen, M. -C. ;
Gu, Mile ;
Zhu, M. -J. ;
Li, Li ;
Liu, Nai-Le ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[2]   Quantum circuit design for solving linear systems of equations [J].
Cao, Yudong ;
Daskin, Anmer ;
Frankel, Steven ;
Kais, Sabre .
MOLECULAR PHYSICS, 2012, 110 (15-16) :1675-1680
[3]   Integrated photonic quantum gates for polarization qubits [J].
Crespi, Andrea ;
Ramponi, Roberta ;
Osellame, Roberto ;
Sansoni, Linda ;
Bongioanni, Irene ;
Sciarrino, Fabio ;
Vallone, Giuseppe ;
Mataloni, Paolo .
NATURE COMMUNICATIONS, 2011, 2
[4]   Realization of a photonic controlled-NOT gate sufficient for quantum computation [J].
Gasparoni, S ;
Pan, JW ;
Walther, P ;
Rudolph, T ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :020504-1
[5]   Realization of a programmable two-qubit quantum processor [J].
Hanneke, D. ;
Home, J. P. ;
Jost, J. D. ;
Amini, J. M. ;
Leibfried, D. ;
Wineland, D. J. .
NATURE PHYSICS, 2010, 6 (01) :13-16
[6]   Quantum Algorithm for Linear Systems of Equations [J].
Harrow, Aram W. ;
Hassidim, Avinatan ;
Lloyd, Seth .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[7]   Linear optics controlled-phase gate made simple [J].
Kiesel, N ;
Schmid, C ;
Weber, U ;
Ursin, R ;
Weinfurter, H .
PHYSICAL REVIEW LETTERS, 2005, 95 (21)
[8]   Quantum computations: algorithms and error correction [J].
Kitaev, AY .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1191-1249
[9]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[10]   Linear optical quantum computing with photonic qubits [J].
Kok, Pieter ;
Munro, W. J. ;
Nemoto, Kae ;
Ralph, T. C. ;
Dowling, Jonathan P. ;
Milburn, G. J. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :135-174