Probabilistic analysis of algorithms for cost constrained minimum weighted combinatorial objects

被引:2
|
作者
Frieze, Alan [1 ]
Tkocz, Tomasz [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
Probabilistic analysis; Spanning tree; Assignment problem; Cost constraint;
D O I
10.1016/j.orl.2021.04.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider cost constrained versions of the minimum spanning tree problem and the assignment problem. We assume edge weights are independent copies of a continuous random variable Z that satisfies F(x) = P(Z <= x) approximate to x(alpha) as x -> 0, where alpha >= 1. Also, there are r = O(1) budget constraints with edge costs chosen from the same distribution. We use Lagrangean duality to construct polynomial time algorithms that produce asymptotically optimal solutions. For the spanning tree problem, we allow r > 1, but for the assignment problem we can only analyse the case r = 1. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 404
页数:5
相关论文
共 50 条
  • [21] EFFICIENT ALGORITHMS FOR THE (WEIGHTED) MINIMUM CIRCLE PROBLEM
    HEARN, DW
    VIJAY, J
    OPERATIONS RESEARCH, 1982, 30 (04) : 777 - 795
  • [22] 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms
    Drmota, Michael
    Heuberger, Clemens
    Leibniz International Proceedings in Informatics, LIPIcs, 2020, 159
  • [23] Probabilistic analysis and practical algorithms for the flow shop weighted completion time problem
    Kaminsky, P
    Simchi-Levi, D
    OPERATIONS RESEARCH, 1998, 46 (06) : 872 - 882
  • [24] On dual minimum cost flow algorithms
    Jens Vygen
    Mathematical Methods of Operations Research, 2002, 56 : 101 - 126
  • [25] On dual minimum cost flow algorithms
    Vygen, J
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2002, 56 (01) : 101 - 126
  • [26] Combinatorial algorithms for restricted inverse optimal value problems on minimum spanning tree under weighted 1 1 norm
    Jia, Junhua
    Guan, Xiucui
    Zhang, Binwu
    Qian, Xinqiang
    Pardalos, Panos M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [27] Flow constrained minimum cost flow problem
    Sonia
    OPSEARCH, 2012, 49 (2) : 154 - 168
  • [28] Budget-constrained minimum cost flows
    Holzhauser, Michael
    Krumke, Sven O.
    Thielen, Clemens
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (04) : 1720 - 1745
  • [29] Budget-constrained minimum cost flows
    Michael Holzhauser
    Sven O. Krumke
    Clemens Thielen
    Journal of Combinatorial Optimization, 2016, 31 : 1720 - 1745
  • [30] A decentralized solution for the constrained minimum cost flow
    Bauso, D.
    Blanchini, F.
    Giarre, L.
    Pesenti, R.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 661 - 666