Nanolamellar medium entropy alloy composites with high strength and large plasticity

被引:18
作者
Cao, Zhenhua [1 ,2 ]
Ma, Yujie [3 ]
Cai, Yunpeng [3 ]
Wang, Gengjie [3 ]
Pan, Guanjun [3 ]
Ren, Hua [3 ]
Zhai, Gaoyang [1 ,2 ]
Zhang, Zijian [1 ,2 ]
Li, Pengfei [1 ,2 ]
Meng, Xiangkang [3 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Peoples R China
[2] Nanjing Tech Univ, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct, Nanjing 210009, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Inst Mat Engn, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Medium entropy alloys; Nanolamellar structure; Strain hardening; Size effect; DEFORMATION MECHANISMS; DAMAGE-TOLERANCE; EVOLUTION; HARDNESS; STRESS; NANOCRYSTALLINE; MICROSTRUCTURE; COMPRESSION; BEHAVIORS; DUCTILITY;
D O I
10.1016/j.jallcom.2021.159775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single phase coarse-grained medium entropy alloys (MEA) generally possess a low yield strength and high plasticity at macroscopic scale, but strain hardening/softening behavior of nanocrystalline MEA still remains unknown. Here we design and prepare the nanolamellar CoCrNi MEA with heterogeneous interfaces by inserting a hard Ta thin layer. Interestingly, the CoCrNi/Ta pillars have an excellent combination with high yield strength and large uniform plastic strain as compared to single phase MEA when the layer thickness is below 50 nm. Moreover, the strength and strain hardening rate simultaneously increase with decreasing layer thickness in CoCrNi/Ta specimens. Strong constrain effect and the heterogeneous interface by the hard layer effectively suppress the propagation of major shear banding, which is responsible for the enhanced strain hardening. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Microband-induced plasticity in a Ti-rich high-entropy alloy
    Zherebtsov, S.
    Yurchenko, N.
    Panina, E.
    Tojibaev, A.
    Tikhonovsky, M.
    Salishchev, G.
    Stepanov, N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [32] Achieving superior combination of strength and ductility via nano-twins and γ′ precipitates in a NiCoCr-based medium entropy alloy
    Feng, Tian
    Yuan, Shengyun
    Zhang, Bohou
    Yang, Yaqing
    An, Xinlai
    Kong, Jian
    Zhang, Yong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 5397 - 5406
  • [33] Correlation of cryogenic deformation mechanisms to excellent strength-ductility of CrCoNi medium entropy alloy processed by selective laser melting
    Jung, Kyung-Hwan
    Tran, Minh Tien
    Shan, Zhengtong
    Lee, Ho Won
    Hwang, Sun-Kwang
    Kim, Hyung Giun
    Kim, Dong-Kyu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 2297 - 2315
  • [34] Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion
    Yi, Mengling
    Tu, Jian
    Yang, Li
    Zhou, Zhiming
    Chen, Siqi
    Ding, Lipeng
    Du, Yanbin
    Qiu, Yingkun
    Liang, Yanxiang
    ADDITIVE MANUFACTURING, 2024, 87
  • [35] Additively manufactured high strength and ductility CrCoNi medium entropy alloy with hierarchical microstructure
    Han, Bolun
    Zhang, Chengcheng
    Feng, Kai
    Li, Zhuguo
    Zhang, Xiancheng
    Shen, Yao
    Wang, Xiaodong
    Kokawa, Hiroyuki
    Li, Ruifeng
    Wang, Zhiyuan
    Chu, Paul K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [36] Significantly improved strength and plasticity of a refractory high-entropy alloy at small length scale
    Qu, Ruitao
    Wu, Shaojie
    Volkert, Cynthia A.
    Zhang, Zhefeng
    Liu, Feng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 867
  • [37] Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites
    Maity, T.
    Singh, A.
    Dutta, A.
    Das, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 666 : 72 - 79
  • [38] Super-high strength of a CoCrNiFe based high entropy alloy
    Man, Jiale
    Wu, Baolin
    Duan, Guosheng
    Zhang, Lu
    Du, Xinghao
    Liu, Yandong
    Esling, Claude
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 177 : 79 - 84
  • [39] Superior strength-ductility CoCrNi medium-entropy alloy wire
    Liu, Jun-Peng
    Chen, Jin-Xi
    Liu, Tian-Wei
    Li, Chen
    Chen, Yan
    Dai, Lan-Hong
    SCRIPTA MATERIALIA, 2020, 181 : 19 - 24
  • [40] Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures
    Wang, Jianying
    Zou, Jianpeng
    Yang, Hailin
    Zhang, Lijun
    Liu, Zhilin
    Dong, Xixi
    Ji, Shouxun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 127 : 61 - 70