Effect of Band-edge Interface Traps and Transition Region Mobility on Transport in 4H-SiC MOSFETs

被引:9
作者
Potbhare, Siddharth [1 ]
Akturk, Akin [1 ]
Goldsman, Neil [1 ]
Lelis, Aivars [2 ]
Dhar, Sarit [3 ]
Agarwal, Anant [3 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] US Army Res Lab, Adelphi, MD 20742 USA
[3] Cree Inc, Durham, NC USA
来源
SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2 | 2010年 / 645-648卷
关键词
Transition Region; Surface Roughness; Mobility; Interface Traps; Device Modeling; SiC MOSFETs;
D O I
10.4028/www.scientific.net/MSF.645-648.975
中图分类号
TB33 [复合材料];
学科分类号
摘要
We present physics based models for the occupation of interface traps and the mobility of the transition layer found in 4H-SiC MOSFETs and extract values for the same using combined numerical simulation and experimental characterization. The Si-C-O transition layer found in 4H-SiC MOS devices is electrically modeled as having a doping dependent mobility that is different from the regular bulk 4H-SiC bulk mobility. Compared to the high intrinsic bulk mobility of 4H-SiC, the transition layer intrinsic mobility was extracted to be approximately 165cm(2)/Vs. The occurrence of the excessive high density of interface traps near the conduction band edge led us to develop a new model for the occupation of traps lying inside the conduction band itself. Due to the conduction band trap densities being comparable to the conduction band electron states, a non-zero probability exists for their occupation, which causes the occupied trap densities to be very high in strong inversion. Detailed numerical simulations and corroboration with experiment have been performed to calibrate the models and extract physical parameter values.
引用
收藏
页码:975 / +
页数:2
相关论文
共 4 条
[1]   High field density-functional-theory based Monte Carlo: 4H-SiC impact ionization and velocity saturation [J].
Akturk, Akin ;
Goldsman, Neil ;
Potbhare, Siddharth ;
Lelis, Aivars .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (03)
[2]  
PENSL G, MAT RES SOC S, V640
[3]   A physical model of high temperature 4H-SiC MOSFETs [J].
Potbhare, Siddharth ;
Goldsman, Neil ;
Lelis, Aivars ;
McGarrity, James M. ;
McLean, F. Barry ;
Habersat, Daniel .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (08) :2029-2040
[4]   Shallow states at SiO2/4H-SiC interface on (11(2)over-bar-0) and (0001) faces [J].
Yano, H ;
Kimoto, T ;
Matsunami, H .
APPLIED PHYSICS LETTERS, 2002, 81 (02) :301-303