A priori error estimator of the generalized-α method for structural dynamics

被引:11
作者
Chung, J
Cho, EH
Choi, K
机构
[1] Hanyang Univ, Dept Mech Engn, Ansan 425791, Kyunggi Do, South Korea
[2] Inha Univ, Dept Aerosp Engn, Nam Gu, Inchon 402751, South Korea
关键词
error estimator; automatic time-stepping algorithm; time integration; structural dynamics;
D O I
10.1002/nme.688
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An a priori error estimator for the generalized-alpha time-integration method is developed to solve structural dynamic problems efficiently. Since the proposed error estimator is computed with only information in the previous and current time-steps, the time-step size can be adaptively selected without a feedback process, which is required in most conventional a posteriori error estimators. This paper shows that the automatic time-stepping algorithm using the a priori estimator performs more efficient time integration, when compared to algorithms using an a posteriori estimator. In particular, the proposed error estimator can be usefully applied to large-scale structural dynamic problems, because it is helpful to save computation time. To verify efficiency of the algorithm, several examples are numerically investigated. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:537 / 554
页数:18
相关论文
共 50 条
[31]   An improved computational method in structural dynamics [J].
Moradipour, Parviz ;
Noorzaei, Jamaloddin ;
Jaafar, Mohd Saleh ;
Aziz, Farah Nora Aznieta Abdul .
JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2013, 11 (03) :288-315
[32]   HOMOTOPY SOLUTION OF THE INVERSE GENERALIZED EIGENVALUE PROBLEMS IN STRUCTURAL DYNAMICS [J].
李书 ;
王波 ;
胡继忠 .
AppliedMathematicsandMechanics(EnglishEdition), 2004, (05) :580-586
[33]   Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics [J].
Li Shu ;
Wang Bo ;
Hu Ji-zhong .
Applied Mathematics and Mechanics, 2004, 25 (5) :580-586
[34]   Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics [J].
Li, S ;
Wang, B ;
Hu, JZ .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (05) :580-586
[35]   A new time integration method in structural dynamics using the Taylor series [J].
Wang, SM ;
Shenoi, RA ;
Zhao, LB .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1998, 212 (07) :567-575
[36]   Damping Perturbation Based Time Integration Asymptotic Method for Structural Dynamics [J].
Lazaro, Mario .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (10)
[37]   A time finite element method for structural dynamics [J].
Wang, Li ;
Zhong, Hongzhi .
APPLIED MATHEMATICAL MODELLING, 2017, 41 :445-461
[38]   A composite collocation method with low-period elongation for structural dynamics problems [J].
Huang, Ce ;
Fu, Minghui .
COMPUTERS & STRUCTURES, 2018, 195 :74-84
[39]   An h-adaptive element-free Galerkin meshless method using a posteriori error estimator [J].
Hajjout, Imane ;
Haddouch, Manal ;
Boudi, El Mostapha .
MATERIALS TODAY COMMUNICATIONS, 2020, 25 (25)
[40]   An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem [J].
Schoebinger, Markus ;
Schoeberl, Joachim ;
Hollaus, Karl .
IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)